Carrier-adjuvanted immunostimulator to boost photodynamic immunotherapy by downregulating PD-L1 and impairing ATP hydrolysis

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2025-01-02 DOI:10.1007/s40843-024-3170-1
Yi Cen  (, ), Ying Chen  (, ), Hua Cai  (, ), Xinxuan Li  (, ), Xiayun Chen  (, ), Qianqian Liu  (, ), Baixue Yu  (, ), Yibin Liu  (, ), Tao Wang  (, ), Shiying Li  (, )
{"title":"Carrier-adjuvanted immunostimulator to boost photodynamic immunotherapy by downregulating PD-L1 and impairing ATP hydrolysis","authors":"Yi Cen \n (,&nbsp;),&nbsp;Ying Chen \n (,&nbsp;),&nbsp;Hua Cai \n (,&nbsp;),&nbsp;Xinxuan Li \n (,&nbsp;),&nbsp;Xiayun Chen \n (,&nbsp;),&nbsp;Qianqian Liu \n (,&nbsp;),&nbsp;Baixue Yu \n (,&nbsp;),&nbsp;Yibin Liu \n (,&nbsp;),&nbsp;Tao Wang \n (,&nbsp;),&nbsp;Shiying Li \n (,&nbsp;)","doi":"10.1007/s40843-024-3170-1","DOIUrl":null,"url":null,"abstract":"<div><p>Immune evasion behavior and immunosuppressive characteristics of tumor extensively impede the immune initiation effect of therapy triggered immunogenic cell death (ICD). In this work, a carrier-adjuvanted immunostimulator (designated as CoCeC) is developed to boost photodynamic immunotherapy by downregulating programmed death ligand 1 (PD-L1) and impairing adenosine triphosphate (ATP) hydrolysis. Among these, the crosslinked chitosan oligosaccharide is applied as the drug carrier for delivery of Ce6 and Ceritinib, which also serves as an immune adjuvant to downregulate PD-L1. Meanwhile, the robust photodynamic therapy (PDT) of CoCeC exhibits lethal toxicity against tumor cells to induce ICD and release damage-associated molecular patterns (DAMPs), which can also impair ATP hydrolysis by blocking CD39. <i>In vitro</i> and <i>in vivo</i> results demonstrate the robust therapeutic efficacy of CoCeC to suppress primary tumor growth and activate a superior immune elimination against lung metastasis by amplifying the immune initiation of ICD with the assistance of immune adjuvants. This work provides a self-adjuvanted strategy to enhance the immune response of therapy induced ICD, which is promising to activate systemic antitumor immunity in consideration of the complicated immunosuppressive factors.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 2","pages":"626 - 639"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3170-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Immune evasion behavior and immunosuppressive characteristics of tumor extensively impede the immune initiation effect of therapy triggered immunogenic cell death (ICD). In this work, a carrier-adjuvanted immunostimulator (designated as CoCeC) is developed to boost photodynamic immunotherapy by downregulating programmed death ligand 1 (PD-L1) and impairing adenosine triphosphate (ATP) hydrolysis. Among these, the crosslinked chitosan oligosaccharide is applied as the drug carrier for delivery of Ce6 and Ceritinib, which also serves as an immune adjuvant to downregulate PD-L1. Meanwhile, the robust photodynamic therapy (PDT) of CoCeC exhibits lethal toxicity against tumor cells to induce ICD and release damage-associated molecular patterns (DAMPs), which can also impair ATP hydrolysis by blocking CD39. In vitro and in vivo results demonstrate the robust therapeutic efficacy of CoCeC to suppress primary tumor growth and activate a superior immune elimination against lung metastasis by amplifying the immune initiation of ICD with the assistance of immune adjuvants. This work provides a self-adjuvanted strategy to enhance the immune response of therapy induced ICD, which is promising to activate systemic antitumor immunity in consideration of the complicated immunosuppressive factors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Research progress of one-dimensional van der Waals atomic chain materials Direct self-assembly of organic micro-arrays with programmable multi-color patterns Enhancing low-temperature performance and suppressing cathode dissolution in aqueous zinc-ion batteries: local structure and electrochemical crosstalk control of V2O5 Lithium sulfonate-based polyether gel polymer electrolytes with high ionic conductivity and uniform Li-ion transport for high-performance lithium metal batteries Injectable chitosan microspheres resisting inflammatory and oxidative stress for ameliorating intervertebral disc degeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1