Yi Cen
(, ), Ying Chen
(, ), Hua Cai
(, ), Xinxuan Li
(, ), Xiayun Chen
(, ), Qianqian Liu
(, ), Baixue Yu
(, ), Yibin Liu
(, ), Tao Wang
(, ), Shiying Li
(, )
{"title":"Carrier-adjuvanted immunostimulator to boost photodynamic immunotherapy by downregulating PD-L1 and impairing ATP hydrolysis","authors":"Yi Cen \n (, ), Ying Chen \n (, ), Hua Cai \n (, ), Xinxuan Li \n (, ), Xiayun Chen \n (, ), Qianqian Liu \n (, ), Baixue Yu \n (, ), Yibin Liu \n (, ), Tao Wang \n (, ), Shiying Li \n (, )","doi":"10.1007/s40843-024-3170-1","DOIUrl":null,"url":null,"abstract":"<div><p>Immune evasion behavior and immunosuppressive characteristics of tumor extensively impede the immune initiation effect of therapy triggered immunogenic cell death (ICD). In this work, a carrier-adjuvanted immunostimulator (designated as CoCeC) is developed to boost photodynamic immunotherapy by downregulating programmed death ligand 1 (PD-L1) and impairing adenosine triphosphate (ATP) hydrolysis. Among these, the crosslinked chitosan oligosaccharide is applied as the drug carrier for delivery of Ce6 and Ceritinib, which also serves as an immune adjuvant to downregulate PD-L1. Meanwhile, the robust photodynamic therapy (PDT) of CoCeC exhibits lethal toxicity against tumor cells to induce ICD and release damage-associated molecular patterns (DAMPs), which can also impair ATP hydrolysis by blocking CD39. <i>In vitro</i> and <i>in vivo</i> results demonstrate the robust therapeutic efficacy of CoCeC to suppress primary tumor growth and activate a superior immune elimination against lung metastasis by amplifying the immune initiation of ICD with the assistance of immune adjuvants. This work provides a self-adjuvanted strategy to enhance the immune response of therapy induced ICD, which is promising to activate systemic antitumor immunity in consideration of the complicated immunosuppressive factors.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 2","pages":"626 - 639"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3170-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Immune evasion behavior and immunosuppressive characteristics of tumor extensively impede the immune initiation effect of therapy triggered immunogenic cell death (ICD). In this work, a carrier-adjuvanted immunostimulator (designated as CoCeC) is developed to boost photodynamic immunotherapy by downregulating programmed death ligand 1 (PD-L1) and impairing adenosine triphosphate (ATP) hydrolysis. Among these, the crosslinked chitosan oligosaccharide is applied as the drug carrier for delivery of Ce6 and Ceritinib, which also serves as an immune adjuvant to downregulate PD-L1. Meanwhile, the robust photodynamic therapy (PDT) of CoCeC exhibits lethal toxicity against tumor cells to induce ICD and release damage-associated molecular patterns (DAMPs), which can also impair ATP hydrolysis by blocking CD39. In vitro and in vivo results demonstrate the robust therapeutic efficacy of CoCeC to suppress primary tumor growth and activate a superior immune elimination against lung metastasis by amplifying the immune initiation of ICD with the assistance of immune adjuvants. This work provides a self-adjuvanted strategy to enhance the immune response of therapy induced ICD, which is promising to activate systemic antitumor immunity in consideration of the complicated immunosuppressive factors.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.