Synthesis and Characterization of Chitosan/Zinc Oxide Nanocomposite for Enhanced Applications as Antibacterial, Antifungal and Aflatoxin B1 Adsorption

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Cluster Science Pub Date : 2025-02-02 DOI:10.1007/s10876-024-02760-4
Muhammad Asif Asghar, Farman Ahmed, Abdur Rehman Qamar, Kehkashan Khan, Anila Anwar
{"title":"Synthesis and Characterization of Chitosan/Zinc Oxide Nanocomposite for Enhanced Applications as Antibacterial, Antifungal and Aflatoxin B1 Adsorption","authors":"Muhammad Asif Asghar,&nbsp;Farman Ahmed,&nbsp;Abdur Rehman Qamar,&nbsp;Kehkashan Khan,&nbsp;Anila Anwar","doi":"10.1007/s10876-024-02760-4","DOIUrl":null,"url":null,"abstract":"<div><p>The current study was designed to synthesize of chitosan (CS) by shrimp shells and grafted with zinc oxide nanoparticles (ZnO-NPs) in-situ precipitation method. The physical features of nanomaterials were studied using SEM, EDS, XRD, FTIR and UV-vis spectroscopy. The CS/Zn nanocomposite was crystalline, spherical with 12−18 nm in size. Nanocomposite's antibacterial and antifungal activity was evaluated against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i> bacterial strains and <i>Aspergillus flavus</i> and <i>A</i>. <i>parasiticus</i> fungal strains, respectively. Additionally, the adsorbent's capacity of nanocomposite was examined with aflatoxin B<sub>1</sub> (AFB<sub>1</sub>). Each nanomaterial shows the significant antibacterial activity against <i>S. aureus</i> and <i>E. coli.</i> The MI values for CS, Zn-NPs and CS/Zn nanocomposite were found to be 256, 128 and 32 µg/mL, respectively. Whereas, the growth of <i>A. flavus, A</i>. <i>parasiticus</i> and the AFB<sub>1</sub> production was inhibited at 5 mg/mL of CS/Zn nanocomposite. Adsorption capacities of ZnO-NPs, CS and CS/Zn nanocomposite were found to be 12.4, 64.5 and 150.4 ng/mg, respectively, as calculated by the Langmuir isotherm model. The thermodynamic and kinetic studies showed that the adsorption process is spontaneous, endothermic and followed the pseudo-second-order kinetic model. In conclusion, the synthesis of CS/Zn is simple, efficient, non-toxic, sustainable, energy-effective and useful as an alternative antibacterial, antifungal and as an AFB<sub>1</sub> detoxification agent in human and animal food.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02760-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The current study was designed to synthesize of chitosan (CS) by shrimp shells and grafted with zinc oxide nanoparticles (ZnO-NPs) in-situ precipitation method. The physical features of nanomaterials were studied using SEM, EDS, XRD, FTIR and UV-vis spectroscopy. The CS/Zn nanocomposite was crystalline, spherical with 12−18 nm in size. Nanocomposite's antibacterial and antifungal activity was evaluated against Staphylococcus aureus and Escherichia coli bacterial strains and Aspergillus flavus and A. parasiticus fungal strains, respectively. Additionally, the adsorbent's capacity of nanocomposite was examined with aflatoxin B1 (AFB1). Each nanomaterial shows the significant antibacterial activity against S. aureus and E. coli. The MI values for CS, Zn-NPs and CS/Zn nanocomposite were found to be 256, 128 and 32 µg/mL, respectively. Whereas, the growth of A. flavus, A. parasiticus and the AFB1 production was inhibited at 5 mg/mL of CS/Zn nanocomposite. Adsorption capacities of ZnO-NPs, CS and CS/Zn nanocomposite were found to be 12.4, 64.5 and 150.4 ng/mg, respectively, as calculated by the Langmuir isotherm model. The thermodynamic and kinetic studies showed that the adsorption process is spontaneous, endothermic and followed the pseudo-second-order kinetic model. In conclusion, the synthesis of CS/Zn is simple, efficient, non-toxic, sustainable, energy-effective and useful as an alternative antibacterial, antifungal and as an AFB1 detoxification agent in human and animal food.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
期刊最新文献
Preparation of Materials Based on Metal Carbonate Nanoparticles for Photodegradation of Organic Pollutants Mercaptan Ligand Effect in Determining the Geometric Structures of Silver Nanoclusters Next-Generation Arsenic Sensors: Advances in Zero-Dimensional (0D) Carbon Quantum Dots Synthesis and Application of Zr MOF UiO-66 Decorated with Folic Acid-Conjugated Poly Ethylene Glycol as a Strong Nanocarrier for the Targeted Drug Delivery of Epirubicin Biogenic Copper/Zinc Oxide Nanocomposites from Bixa orellana: Anticancer Effects through ROS Generation and Apoptosis Induction in Cervical Carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1