Nanocellulose functionalized with ethylenediamine as a modifier of urea-formaldehyde adhesive in particleboard production

IF 2.4 3区 农林科学 Q1 FORESTRY European Journal of Wood and Wood Products Pub Date : 2025-02-04 DOI:10.1007/s00107-025-02213-3
Jakub Kawalerczyk, Dorota Dziurka, Dorota Dukarska, Radosław Mirski
{"title":"Nanocellulose functionalized with ethylenediamine as a modifier of urea-formaldehyde adhesive in particleboard production","authors":"Jakub Kawalerczyk,&nbsp;Dorota Dziurka,&nbsp;Dorota Dukarska,&nbsp;Radosław Mirski","doi":"10.1007/s00107-025-02213-3","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of the conducted research was to investigate the effect of introducing a nanocellulose (NC) functionalized with an ethylenediamine (EDA) to urea-formaldehyde (UF) adhesive on the properties of particleboard. The effectiveness of performed functionalization was confirmed using a Fourier transform infrared spectroscopy (FTIR) and amino groups quantification. Based on the outcomes of a thermogravimetric analysis and the measurements of a contact angle, it was found that the EDA-modified nanocellulose was characterized by improved thermal stability and reduced hydrophilicity. Moreover, the results of differential scanning calorimetry showed that the modification of the UF adhesive increased the enthalpy of the curing reaction, which indicates an increase in the UF adhesive reactivity. The effect was particularly distinct when the EDA-modified NC was applied. Modification of the UF adhesive also had a positive effect on the physical and mechanical properties of the produced single-layer particleboards. The applied functionalization with EDA allowed to increase the potential of NC in improving the internal bond, reducing thickness swelling and formaldehyde content of the manufactured boards. Overall, the use of 1% EDA-modified NC was selected as the optimal variant enabling the production of particleboards characterized by enhanced strength, improved water resistance and decreased formaldehyde content.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-025-02213-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the conducted research was to investigate the effect of introducing a nanocellulose (NC) functionalized with an ethylenediamine (EDA) to urea-formaldehyde (UF) adhesive on the properties of particleboard. The effectiveness of performed functionalization was confirmed using a Fourier transform infrared spectroscopy (FTIR) and amino groups quantification. Based on the outcomes of a thermogravimetric analysis and the measurements of a contact angle, it was found that the EDA-modified nanocellulose was characterized by improved thermal stability and reduced hydrophilicity. Moreover, the results of differential scanning calorimetry showed that the modification of the UF adhesive increased the enthalpy of the curing reaction, which indicates an increase in the UF adhesive reactivity. The effect was particularly distinct when the EDA-modified NC was applied. Modification of the UF adhesive also had a positive effect on the physical and mechanical properties of the produced single-layer particleboards. The applied functionalization with EDA allowed to increase the potential of NC in improving the internal bond, reducing thickness swelling and formaldehyde content of the manufactured boards. Overall, the use of 1% EDA-modified NC was selected as the optimal variant enabling the production of particleboards characterized by enhanced strength, improved water resistance and decreased formaldehyde content.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Wood and Wood Products
European Journal of Wood and Wood Products 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
3.80%
发文量
124
审稿时长
6.0 months
期刊介绍: European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets. European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.
期刊最新文献
A detailed statistical process control implementation for density in MDF manufacture through PCA, Shewhart and EWMA charts Effects of hydrolytic and freeze-thaw aging on the performance of spruce wood Compressive behavior of wood winding circular tubes at different winding angles Study on the transverse compression performance of wood reinforced with wood dowels and finite element numerical simulation Exploring consumer perception of uncoated wooden cladding: a study across three European countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1