{"title":"Inexact proximal point method with a Bregman regularization for quasiconvex multiobjective optimization problems via limiting subdifferentials","authors":"Balendu Bhooshan Upadhyay, Subham Poddar, Jen-Chih Yao, Xiaopeng Zhao","doi":"10.1007/s10479-024-06461-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate a class of unconstrained multiobjective optimization problems (abbreviated as, MPQs), where the components of the objective function are locally Lipschitz and quasiconvex. To solve MPQs, we introduce an inexact proximal point method with Bregman distances (abbreviated as, IPPMB) via Mordukhovich limiting subdifferentials. We establish the well-definedness of the sequence generated by the IPPMB algorithm. Based on two versions of error criteria, we introduce two variants of IPPMB, namely, IPPMB1 and IPPMB2. Moreover, we establish that the sequences generated by the IPPMB1 and IPPMB2 algorithms converge to the Pareto–Mordukhovich critical point of the problem MPQ. In addition, we derive that if the components of the objective function of MPQ are convex, then the sequences converge to the weak Pareto efficient solution of MPQ. Furthermore, we discuss the linear and superlinear convergence of the sequence generated by the IPPMB2 algorithm. We furnish several non-trivial numerical examples to demonstrate the effectiveness of the proposed algorithms and solve them by employing MATLAB R2023b. To demonstrate the applicability and significance of the IPPMB algorithm, we solve a nonsmooth large-scale sparse quasiconvex multiobjective optimization by employing MATLAB R2023b.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"345 1","pages":"417 - 466"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10479-024-06461-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-024-06461-z","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate a class of unconstrained multiobjective optimization problems (abbreviated as, MPQs), where the components of the objective function are locally Lipschitz and quasiconvex. To solve MPQs, we introduce an inexact proximal point method with Bregman distances (abbreviated as, IPPMB) via Mordukhovich limiting subdifferentials. We establish the well-definedness of the sequence generated by the IPPMB algorithm. Based on two versions of error criteria, we introduce two variants of IPPMB, namely, IPPMB1 and IPPMB2. Moreover, we establish that the sequences generated by the IPPMB1 and IPPMB2 algorithms converge to the Pareto–Mordukhovich critical point of the problem MPQ. In addition, we derive that if the components of the objective function of MPQ are convex, then the sequences converge to the weak Pareto efficient solution of MPQ. Furthermore, we discuss the linear and superlinear convergence of the sequence generated by the IPPMB2 algorithm. We furnish several non-trivial numerical examples to demonstrate the effectiveness of the proposed algorithms and solve them by employing MATLAB R2023b. To demonstrate the applicability and significance of the IPPMB algorithm, we solve a nonsmooth large-scale sparse quasiconvex multiobjective optimization by employing MATLAB R2023b.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.