Performance Comparison of Different Rapid Freeze–Quench Strategies for Electron Paramagnetic Resonance

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Applied Magnetic Resonance Pub Date : 2024-11-15 DOI:10.1007/s00723-024-01725-0
Maruan Bracci, Ilenia Serra, Inés García-Rubio, Sabine Van Doorslaer
{"title":"Performance Comparison of Different Rapid Freeze–Quench Strategies for Electron Paramagnetic Resonance","authors":"Maruan Bracci,&nbsp;Ilenia Serra,&nbsp;Inés García-Rubio,&nbsp;Sabine Van Doorslaer","doi":"10.1007/s00723-024-01725-0","DOIUrl":null,"url":null,"abstract":"<div><p>This work addresses the development of a custom-made home-built rapid freeze–quench (RFQ) device and the comparison of its performance to the one of a commercial RFQ setup that was in-house custom adapted. Both systems consist of two syringes that push the reactants into a mixing chamber and the products to a subsequent freezing setup. Using the binding of azide to myoglobin as a calibration reaction, the quenching times of the different setups were compared, evaluating different instrumental parameters, such as software-controlled variation of the aging time, variations of the flow rate and variations of the distance travelled by the mixed sample before freezing. In addition to minimal sample consumption, the home-built RFQ device was found to lead to the shorter reaction times which could be controlled in a time range from 10 to 25 ms. The commercial RFQ system yielded optimal reaction control in a time range from 50 to 200 ms, although a larger volume of reactants needed to be used due to the significant dead volume of the system. Three different freezing methods were also evaluated, among which, in our hands, freezing the jet directly in a deep bath of cold isopentane yielded shorter and reproducible freezing times.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"56 1-2","pages":"229 - 252"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-024-01725-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work addresses the development of a custom-made home-built rapid freeze–quench (RFQ) device and the comparison of its performance to the one of a commercial RFQ setup that was in-house custom adapted. Both systems consist of two syringes that push the reactants into a mixing chamber and the products to a subsequent freezing setup. Using the binding of azide to myoglobin as a calibration reaction, the quenching times of the different setups were compared, evaluating different instrumental parameters, such as software-controlled variation of the aging time, variations of the flow rate and variations of the distance travelled by the mixed sample before freezing. In addition to minimal sample consumption, the home-built RFQ device was found to lead to the shorter reaction times which could be controlled in a time range from 10 to 25 ms. The commercial RFQ system yielded optimal reaction control in a time range from 50 to 200 ms, although a larger volume of reactants needed to be used due to the significant dead volume of the system. Three different freezing methods were also evaluated, among which, in our hands, freezing the jet directly in a deep bath of cold isopentane yielded shorter and reproducible freezing times.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Magnetic Resonance
Applied Magnetic Resonance 物理-光谱学
CiteScore
1.90
自引率
10.00%
发文量
59
审稿时长
2.3 months
期刊介绍: Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields. The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.
期刊最新文献
Cryogenic W-band Electron Spin Resonance Probehead with an Integral Cryogenic Low Noise Amplifier Influence of Second-Order Effects due to Hyperfine Interaction on the Magnitude of the Larmor Frequency 14N Preface to Special Issue Celebration of 80 Years of EPR Part 2 Evolution of Bruker EPR Spectrometers as well as Prospects for Present and Future EPR Applications Autobiography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1