{"title":"Evaluation of Electro-chemical Methods in Wastewater Treatment of Wheat Starch Industry","authors":"Ehsan Fooladgar, Masoud Taheriyoun, Danial Bakhodaei","doi":"10.1007/s11270-025-07756-y","DOIUrl":null,"url":null,"abstract":"<div><p>Wastewater from wheat starch industries is the one with high chemical oxygen demand (COD) level that has adverse effects on the environment and thus special attention to its treatment for the discharge limits satisfaction is crucial. Biological treatment methods have challenges such as requiring extensive space and process time, high sludge production, and efficient management and operation demands. To overcome these challenges, electrochemical methods such as electrocoagulation (EC) and electro-Fenton (EF) can be efficient approaches due to their higher process speeds, minimal facility requirements, and easy operation which make them economically viable. In this study, electrochemical processes, including EC and EF methods were applied for wastewater treatment of a wheat starch industry. After preliminary experiments to identify the effective factors and ranges, the response surface method (RSM) was applied to design the experiments. In RSM seven factors were considered including initial COD, pH, electrode distances, process time, temperature, current intensity, and hydrogen peroxide concentration along with the COD removal efficiency as the response. Statistical analysis showed that hydrogen peroxide concentration and initial COD had the most significant impact, while pH had the least effect on COD removal in the electrochemical process. The optimum results showed that for synthetic wastewater with an initial COD range of 2000–4000 mg/L a COD removal of 75–85% for EC and 89–93% removal for EF were obtained. The results were validated for raw natural wastewater with 88% removal for EC and 92% for EF. In conclusion, while the removal efficiency of the EF process was superior to EC, the former incurs higher costs due to the use of hydrogen peroxide.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07756-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wastewater from wheat starch industries is the one with high chemical oxygen demand (COD) level that has adverse effects on the environment and thus special attention to its treatment for the discharge limits satisfaction is crucial. Biological treatment methods have challenges such as requiring extensive space and process time, high sludge production, and efficient management and operation demands. To overcome these challenges, electrochemical methods such as electrocoagulation (EC) and electro-Fenton (EF) can be efficient approaches due to their higher process speeds, minimal facility requirements, and easy operation which make them economically viable. In this study, electrochemical processes, including EC and EF methods were applied for wastewater treatment of a wheat starch industry. After preliminary experiments to identify the effective factors and ranges, the response surface method (RSM) was applied to design the experiments. In RSM seven factors were considered including initial COD, pH, electrode distances, process time, temperature, current intensity, and hydrogen peroxide concentration along with the COD removal efficiency as the response. Statistical analysis showed that hydrogen peroxide concentration and initial COD had the most significant impact, while pH had the least effect on COD removal in the electrochemical process. The optimum results showed that for synthetic wastewater with an initial COD range of 2000–4000 mg/L a COD removal of 75–85% for EC and 89–93% removal for EF were obtained. The results were validated for raw natural wastewater with 88% removal for EC and 92% for EF. In conclusion, while the removal efficiency of the EF process was superior to EC, the former incurs higher costs due to the use of hydrogen peroxide.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.