A novel approach to authentication of highbush and lowbush blueberry cultivars using image analysis, traditional machine learning and deep learning algorithms
{"title":"A novel approach to authentication of highbush and lowbush blueberry cultivars using image analysis, traditional machine learning and deep learning algorithms","authors":"Ewa Ropelewska, Michał Koniarski","doi":"10.1007/s00217-024-04626-5","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study was to classify blueberry cultivars based on image texture parameters using models built using traditional machine learning and deep learning algorithms. The blueberries belonging to highbush cultivars (‘Bluecrop’, ‘Herbert’, ‘Jersey’, and ‘Nelson’) and lowbush cultivars (‘Emil’ and ‘Putte’) were subjected to imaging using a digital camera. The texture parameters from blueberry images in color channels <i>R</i>, <i>G</i>, <i>B</i>, <i>L</i>, <i>a</i>, <i>b</i>, <i>X</i>, <i>Y</i>, <i>Z</i>, <i>U</i>, <i>V</i>, and <i>S</i> were determined. After selection image textures were used to build models for the classification of all highbush and lowbush blueberry cultivars, and highbush blueberry cultivars and lowbush blueberry cultivars, separately. In the case of distinguishing all cultivars, such as ‘Bluecrop’, ‘Herbert’, ‘Jersey’, and ‘Nelson’, ‘Emil’ and ‘Putte’, the classification accuracy reached 92.33% for a model built using a deep learning algorithm. Models built to distinguish only highbush cultivars provided an average accuracy of up to 91.25% (WiSARD). For models developed to classify two lowbush cultivars, an average accuracy reaching 96% (WiSARD) was found. The applied procedure can be used in practice to distinguish blueberry cultivars before their consumption or processing.</p></div>","PeriodicalId":549,"journal":{"name":"European Food Research and Technology","volume":"251 2","pages":"193 - 204"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00217-024-04626-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Food Research and Technology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s00217-024-04626-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to classify blueberry cultivars based on image texture parameters using models built using traditional machine learning and deep learning algorithms. The blueberries belonging to highbush cultivars (‘Bluecrop’, ‘Herbert’, ‘Jersey’, and ‘Nelson’) and lowbush cultivars (‘Emil’ and ‘Putte’) were subjected to imaging using a digital camera. The texture parameters from blueberry images in color channels R, G, B, L, a, b, X, Y, Z, U, V, and S were determined. After selection image textures were used to build models for the classification of all highbush and lowbush blueberry cultivars, and highbush blueberry cultivars and lowbush blueberry cultivars, separately. In the case of distinguishing all cultivars, such as ‘Bluecrop’, ‘Herbert’, ‘Jersey’, and ‘Nelson’, ‘Emil’ and ‘Putte’, the classification accuracy reached 92.33% for a model built using a deep learning algorithm. Models built to distinguish only highbush cultivars provided an average accuracy of up to 91.25% (WiSARD). For models developed to classify two lowbush cultivars, an average accuracy reaching 96% (WiSARD) was found. The applied procedure can be used in practice to distinguish blueberry cultivars before their consumption or processing.
期刊介绍:
The journal European Food Research and Technology publishes state-of-the-art research papers and review articles on fundamental and applied food research. The journal''s mission is the fast publication of high quality papers on front-line research, newest techniques and on developing trends in the following sections:
-chemistry and biochemistry-
technology and molecular biotechnology-
nutritional chemistry and toxicology-
analytical and sensory methodologies-
food physics.
Out of the scope of the journal are:
- contributions which are not of international interest or do not have a substantial impact on food sciences,
- submissions which comprise merely data collections, based on the use of routine analytical or bacteriological methods,
- contributions reporting biological or functional effects without profound chemical and/or physical structure characterization of the compound(s) under research.