Ambar B. Shrestha, Rina Adhikari, Kevin H. Shaughnessy, Martin G. Bakker
{"title":"Synthesis of pegylated metal phthalocyanines, incorporation in hierarchically porous carbon monoliths and evaluation as heterogeneous catalysts","authors":"Ambar B. Shrestha, Rina Adhikari, Kevin H. Shaughnessy, Martin G. Bakker","doi":"10.1007/s10934-024-01698-2","DOIUrl":null,"url":null,"abstract":"<div><p>Copper and nickel phthalocyanines incorporating four polyethylene glycol (PEG) chains were synthesized for PEG of 200, 400 and 600 molecular weights. The functionalized phthalocyanines were incorporated into a resorcinol-formaldehyde polymer which was converted to a hierarchically porous macroporous-mesoporous carbon by pyrolysis. The pyrolysis released metal atoms from the phthalocyanines which agglomerated to give metal nanoparticles. Particle sizes were determined by SEM and TEM. Phthalocyanines with PEG of 400 molecular weight gave the smallest nanoparticles, in the 3–10 nm range. Catalytic activity for cyclohexene oxidation (for copper phthalocyanines) and <i>p</i>-nitrophenol reduction (for nickel phthalocyanines) were studied, and found not to correlate well with nanoparticle size, likely reflecting differences in accessibility of the nanoparticles on the carbon surface vs. nanoparticles formed within the carbon matrix.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"275 - 288"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01698-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Copper and nickel phthalocyanines incorporating four polyethylene glycol (PEG) chains were synthesized for PEG of 200, 400 and 600 molecular weights. The functionalized phthalocyanines were incorporated into a resorcinol-formaldehyde polymer which was converted to a hierarchically porous macroporous-mesoporous carbon by pyrolysis. The pyrolysis released metal atoms from the phthalocyanines which agglomerated to give metal nanoparticles. Particle sizes were determined by SEM and TEM. Phthalocyanines with PEG of 400 molecular weight gave the smallest nanoparticles, in the 3–10 nm range. Catalytic activity for cyclohexene oxidation (for copper phthalocyanines) and p-nitrophenol reduction (for nickel phthalocyanines) were studied, and found not to correlate well with nanoparticle size, likely reflecting differences in accessibility of the nanoparticles on the carbon surface vs. nanoparticles formed within the carbon matrix.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.