Manisha Dagar, Suresh Kumar, Amit Jain, Manohar Singh, Sucheta
{"title":"Advanced Synthesis and Bandgap Engineering of Ag/Ce/N/ZnO Ternary Nanocomposites for Enhanced Photodegradation of Organic Dyes","authors":"Manisha Dagar, Suresh Kumar, Amit Jain, Manohar Singh, Sucheta","doi":"10.1007/s11106-025-00447-7","DOIUrl":null,"url":null,"abstract":"<p>The development and detailed characterization of mesoporous ternary nanocomposite Ag/Ce/N/ZnO were meticulously undertaken using a hydrothermal technique. The elemental composition was authenticated through energy-dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS), confirming the constituents of the developed samples. Surface and pore structure analyses, conducted via the Brunauer–Emmett–Teller (BET) method, revealed the mesoporous characteristics of the materials, evidenced by class IV hysteresis loops, highlighting an enhanced surface area to 59.01 m<sup>2</sup>/g due to mesoporosity. Ultraviolet-visible (UV-Vis) spectroscopy results indicated a reduction in the optical band gap from 3.094 to 2.501 eV, associated with increased Ag-dopant concentration to 6%. The structural integrity, maintained as a hexagonal wurzite configuration, was verified by X-ray diffraction (XRD), which also showed a slight increase in crystallite dimensions from 21 to 23 nm with higher doping levels. Scanning electron microscopy (SEM) analyses depicted the synthesized entities' agglomeration tendencies and distinct morphological features. Photoluminescence (PL) studies suggested decreased electron-hole recombination rates for samples with elevated doping ratios. Moreover, these enhanced materials showcased augmented photocatalytic performance in the degradation of methylene blue and Congo red dyes after 90 min of contact, indicating their promising applications for water purification.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"63 3-4","pages":"150 - 163"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-025-00447-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The development and detailed characterization of mesoporous ternary nanocomposite Ag/Ce/N/ZnO were meticulously undertaken using a hydrothermal technique. The elemental composition was authenticated through energy-dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS), confirming the constituents of the developed samples. Surface and pore structure analyses, conducted via the Brunauer–Emmett–Teller (BET) method, revealed the mesoporous characteristics of the materials, evidenced by class IV hysteresis loops, highlighting an enhanced surface area to 59.01 m2/g due to mesoporosity. Ultraviolet-visible (UV-Vis) spectroscopy results indicated a reduction in the optical band gap from 3.094 to 2.501 eV, associated with increased Ag-dopant concentration to 6%. The structural integrity, maintained as a hexagonal wurzite configuration, was verified by X-ray diffraction (XRD), which also showed a slight increase in crystallite dimensions from 21 to 23 nm with higher doping levels. Scanning electron microscopy (SEM) analyses depicted the synthesized entities' agglomeration tendencies and distinct morphological features. Photoluminescence (PL) studies suggested decreased electron-hole recombination rates for samples with elevated doping ratios. Moreover, these enhanced materials showcased augmented photocatalytic performance in the degradation of methylene blue and Congo red dyes after 90 min of contact, indicating their promising applications for water purification.
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.