Lantian Wang, Tian Ma, Dirk Lucas, Kerstin Eckert, Hendrik Hessenkemper
{"title":"A contribution to 3D tracking of deformable bubbles in swarms using temporal information","authors":"Lantian Wang, Tian Ma, Dirk Lucas, Kerstin Eckert, Hendrik Hessenkemper","doi":"10.1007/s00348-025-03963-9","DOIUrl":null,"url":null,"abstract":"<p>Reliable Lagrangian 3D tracking of individual bubble swarm members allows a deeper understanding of hydrodynamic bubble–bubble interactions and their collective rise. For multi-view measurements, we have recently developed such a tracking method (Hessenkemper in Int J Multiph Flow 179:104932, 2024), which is able to track deformable bubbles with low to moderate view obstruction through the bubbles to each other. In the present work, we aim to further enhance the 3D tracking performance by additionally incorporating 2D temporal information in the form of previously established 2D tracks in each camera view. The new 3D tracking method is able to disambiguate cross-view object associations at each time step by using the 2D track information accumulated over time. In addition, the temporal information from multiple 2D domains is used in two post-processing steps to improve the completeness of established 3D trajectories. Compared to the previous 3D tracking method, the extended 3D tracking framework shows noticeable improvements in tracking ability, accuracy, and completeness of trajectories.</p>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-03963-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-03963-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reliable Lagrangian 3D tracking of individual bubble swarm members allows a deeper understanding of hydrodynamic bubble–bubble interactions and their collective rise. For multi-view measurements, we have recently developed such a tracking method (Hessenkemper in Int J Multiph Flow 179:104932, 2024), which is able to track deformable bubbles with low to moderate view obstruction through the bubbles to each other. In the present work, we aim to further enhance the 3D tracking performance by additionally incorporating 2D temporal information in the form of previously established 2D tracks in each camera view. The new 3D tracking method is able to disambiguate cross-view object associations at each time step by using the 2D track information accumulated over time. In addition, the temporal information from multiple 2D domains is used in two post-processing steps to improve the completeness of established 3D trajectories. Compared to the previous 3D tracking method, the extended 3D tracking framework shows noticeable improvements in tracking ability, accuracy, and completeness of trajectories.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.