A Novel Method for Segmentation and Detection of Weld Defects in UHV Equipment Based on Multiscale Feature Fusion

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Russian Journal of Nondestructive Testing Pub Date : 2025-01-27 DOI:10.1134/S1061830924602903
Yuhui Zong, Lei Liu, Dongjie Guo, Hui Zhang, Mengen Shen
{"title":"A Novel Method for Segmentation and Detection of Weld Defects in UHV Equipment Based on Multiscale Feature Fusion","authors":"Yuhui Zong,&nbsp;Lei Liu,&nbsp;Dongjie Guo,&nbsp;Hui Zhang,&nbsp;Mengen Shen","doi":"10.1134/S1061830924602903","DOIUrl":null,"url":null,"abstract":"<p>A novel method for detecting weld defects in ultra-high voltage (UHV) equipment is present by combining unimodal semantic segmentation with X-ray imaging. The approach begins by employing a deep neural network to extract weak weld features from X-ray images. A channel attention module is introduced to balance the importance of different feature weights, enhancing the network’s ability to focus on key features. An atrous spatial pyramid pooling module is then utilized to expand the receptive field, effectively leveraging the spatial hierarchical information within the X-ray images. Additionally, a multi-scale feature fusion module is applied to automatically learn feature relationships, capturing semantic information at various scales, which significantly improves the distinction between defective and normal weld regions. The method’s effectiveness is validated through repeated experiments on the GDXray weld dataset and a self-constructed UHV weld dataset. Quantitative comparisons demonstrate that the proposed method significantly enhances the segmentation accuracy of weld defects in UHV equipment, providing a valuable tool for technicians in the field of weld non-destructive testing.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":"60 11","pages":"1305 - 1313"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nondestructive Testing","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1061830924602903","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

A novel method for detecting weld defects in ultra-high voltage (UHV) equipment is present by combining unimodal semantic segmentation with X-ray imaging. The approach begins by employing a deep neural network to extract weak weld features from X-ray images. A channel attention module is introduced to balance the importance of different feature weights, enhancing the network’s ability to focus on key features. An atrous spatial pyramid pooling module is then utilized to expand the receptive field, effectively leveraging the spatial hierarchical information within the X-ray images. Additionally, a multi-scale feature fusion module is applied to automatically learn feature relationships, capturing semantic information at various scales, which significantly improves the distinction between defective and normal weld regions. The method’s effectiveness is validated through repeated experiments on the GDXray weld dataset and a self-constructed UHV weld dataset. Quantitative comparisons demonstrate that the proposed method significantly enhances the segmentation accuracy of weld defects in UHV equipment, providing a valuable tool for technicians in the field of weld non-destructive testing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Nondestructive Testing
Russian Journal of Nondestructive Testing 工程技术-材料科学:表征与测试
CiteScore
1.60
自引率
44.40%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Russian Journal of Nondestructive Testing, a translation of Defectoskopiya, is a publication of the Russian Academy of Sciences. This publication offers current Russian research on the theory and technology of nondestructive testing of materials and components. It describes laboratory and industrial investigations of devices and instrumentation and provides reviews of new equipment developed for series manufacture. Articles cover all physical methods of nondestructive testing, including magnetic and electrical; ultrasonic; X-ray and Y-ray; capillary; liquid (color luminescence), and radio (for materials of low conductivity).
期刊最新文献
Adaptive Signal Reconstruction Based on VMD for Rail Welding Joint Defect Detection A Study on the Failure Analysis of M10 Bolt Caused by Prefabricated Cracks Based on Ultrasonic Method Modeling of Reflected Ultrasonic Fields in Composed Samples Anisotropy of Acoustic Properties in Thin-Sheet Rolled Low-Carbon Manganese Steel Synthesis of the Results of Ultrasonic and Thermal Testing of Metal–Polymer Composite Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1