{"title":"Fermionic fields in a four-dimensional \\(\\Lambda\\) Bonnor–Melvin space–time","authors":"F. Ahmed, N. Candemir, A. Bouzenada","doi":"10.1134/S0040577925010131","DOIUrl":null,"url":null,"abstract":"<p> We investigate how the gravitational field generated by a four-dimensional electrovacuum cosmological space–time influences the dynamics of fermionic fields governed by the Dirac equation, while also considering the effects of topology. We derive the radial wave equation corresponding to the relativistic Dirac equation and obtain analytical solutions for the energy levels and wave functions of the fermionic field within our framework. Our analysis reveals that various parameters, including the cosmological constant, the parameter responsible for space topology, and quantum numbers, play significant roles in determining the eigenvalues of the quantum particles. Specifically, we demonstrate that the presence of the topological parameter disrupts the degeneracy of the energy spectrum. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"222 1","pages":"170 - 182"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577925010131","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate how the gravitational field generated by a four-dimensional electrovacuum cosmological space–time influences the dynamics of fermionic fields governed by the Dirac equation, while also considering the effects of topology. We derive the radial wave equation corresponding to the relativistic Dirac equation and obtain analytical solutions for the energy levels and wave functions of the fermionic field within our framework. Our analysis reveals that various parameters, including the cosmological constant, the parameter responsible for space topology, and quantum numbers, play significant roles in determining the eigenvalues of the quantum particles. Specifically, we demonstrate that the presence of the topological parameter disrupts the degeneracy of the energy spectrum.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.