Invasion-Migration-Wear Mechanism of Hard Particles at the Interface of Water-Lubricated Rubber Bearing Under Friction Vibration Excitation

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Tribology Letters Pub Date : 2025-01-25 DOI:10.1007/s11249-025-01961-w
Fuming Kuang, Anbang Zhu, Xincong Zhou, Chengqing Yuan, Hongling Qin, Pan Cao, Dequan Zhu, Qing Li, Qing He, Jun Wang
{"title":"Invasion-Migration-Wear Mechanism of Hard Particles at the Interface of Water-Lubricated Rubber Bearing Under Friction Vibration Excitation","authors":"Fuming Kuang,&nbsp;Anbang Zhu,&nbsp;Xincong Zhou,&nbsp;Chengqing Yuan,&nbsp;Hongling Qin,&nbsp;Pan Cao,&nbsp;Dequan Zhu,&nbsp;Qing Li,&nbsp;Qing He,&nbsp;Jun Wang","doi":"10.1007/s11249-025-01961-w","DOIUrl":null,"url":null,"abstract":"<div><p>In sediment environments, water-lubricated rubber bearings are inevitably subjected to particle abrasion, especially during frictional vibration. However, the invasion-migration-wear mechanism of hard particles under frictional vibration excitation remains unclear. This study analyzes the contact strain at the friction interface and the dynamic response of the friction system by constructing a visualized friction pair at the interface and employing digital image processing technology. The results reveal that the friction-induced vibration in the water-lubricated rubber bearing-rotor system primarily manifests as chatter and squeal. Chatter represents a more intense stick–slip behavior, during which larger sediment particles are allowed to invade. These invading particles tend to sink deeper into the friction pair during the stick phase and migrate with the water flow during the slip phase, leading to combined wear in the form of scratches and pits. During squeal, the amplitude of stick–slip behavior is relatively small, allowing only small sediment particles to invade, which result in scratches on the bearing surface. When the system does not experience friction vibration, sediment particles are unlikely to enter the friction interface, even in a sediment-rich environment, and therefore, no significant wear occurs.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-025-01961-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In sediment environments, water-lubricated rubber bearings are inevitably subjected to particle abrasion, especially during frictional vibration. However, the invasion-migration-wear mechanism of hard particles under frictional vibration excitation remains unclear. This study analyzes the contact strain at the friction interface and the dynamic response of the friction system by constructing a visualized friction pair at the interface and employing digital image processing technology. The results reveal that the friction-induced vibration in the water-lubricated rubber bearing-rotor system primarily manifests as chatter and squeal. Chatter represents a more intense stick–slip behavior, during which larger sediment particles are allowed to invade. These invading particles tend to sink deeper into the friction pair during the stick phase and migrate with the water flow during the slip phase, leading to combined wear in the form of scratches and pits. During squeal, the amplitude of stick–slip behavior is relatively small, allowing only small sediment particles to invade, which result in scratches on the bearing surface. When the system does not experience friction vibration, sediment particles are unlikely to enter the friction interface, even in a sediment-rich environment, and therefore, no significant wear occurs.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
期刊最新文献
Effects of Asperity Shapes and Normal Loads on Adhesive Wear Mechanisms Elastohydrodynamic Lubrication Mechanisms of Aqueous Polyethylene Glycols Activation Volumes in Tribochemistry; What Do They Mean and How to Calculate Them? Improved Friction and Wear Performance Utilized with Aminoguanidine-Based Ionic Liquid Over Wide Temperature Range for Reciprocating Frictional Contact Surface Application of Oxide Wear Models to Radial Fretting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1