A novel strategy to produce spherical SBA-15 by polymeric macrospheres as a template for drug delivery

IF 2.5 4区 材料科学 Q2 CHEMISTRY, APPLIED Journal of Porous Materials Pub Date : 2024-09-25 DOI:10.1007/s10934-024-01685-7
Betzabeth Jaime-Escalante, Alejandro Rolón-Ávalos, Luz María Melgoza-Contreras, Gerardo Leyva-Gómez, María José Emparan-Legaspi, Néstor Mendoza-Muñoz
{"title":"A novel strategy to produce spherical SBA-15 by polymeric macrospheres as a template for drug delivery","authors":"Betzabeth Jaime-Escalante,&nbsp;Alejandro Rolón-Ávalos,&nbsp;Luz María Melgoza-Contreras,&nbsp;Gerardo Leyva-Gómez,&nbsp;María José Emparan-Legaspi,&nbsp;Néstor Mendoza-Muñoz","doi":"10.1007/s10934-024-01685-7","DOIUrl":null,"url":null,"abstract":"<div><p>Mesoporous silica SBA-15 has been a material widely studied for drug delivery due to its high biocompatibility and chemical stability, its ordered mesoporous cavities allow drug loading. However, it has a non-spherical particle shape, making it difficult to use in solid dosage forms, where spherical particles are preferred for better flow and distribution. In this regard, this study presented a novel strategy to produce spheric SBA-15 using polymeric macrospheres of a pharmaceutical grade acidic-resistant copolymer (Eudragit<sup>®</sup>S) stabilized with Pluronic<sup>®</sup> 123, as a template. The macrospheres of Eudragit<sup>®</sup>S were fabricated using the double emulsion (W1/O/W2) solvent-diffusion technique and then were used as a template to synthesize macrospheres of SBA-15 following acidic hydrolysis. The physicochemical analysis revealed that the SBA-15 has a spherical morphology (SEM) with pores arranged in a hexagonal lattice (TEM). The XRD showed signals at 0.71, 0.88 y 2.03 °2θ, that were indexed at the Miller indices (100), (110), (200). Nitrogen adsorption-desorption isotherms (type IV, H3) demonstrated mesoporous characteristics with a pore size of 9.3 nm, a wall thickness of 3 nm, a pore volume of 0.7538 cm³g<sup>−1</sup>, and a surface area of 640 m²g<sup>−1</sup>. These SBA-15 macrospheres also showed a zero-order release of ibuprofen. The SBA-15 formation using Eudragit<sup>®</sup>S macrospheres suggests that P123 on the macrosphere acts as a spherical core, as shown by FT-IR analysis. The acid-resistant copolymer maintained macrosphere integrity, enabling the assembly of the SBA-15 mesostructure in a 24-hour manufacturing time under acidic conditions.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"32 1","pages":"141 - 153"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10934-024-01685-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01685-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Mesoporous silica SBA-15 has been a material widely studied for drug delivery due to its high biocompatibility and chemical stability, its ordered mesoporous cavities allow drug loading. However, it has a non-spherical particle shape, making it difficult to use in solid dosage forms, where spherical particles are preferred for better flow and distribution. In this regard, this study presented a novel strategy to produce spheric SBA-15 using polymeric macrospheres of a pharmaceutical grade acidic-resistant copolymer (Eudragit®S) stabilized with Pluronic® 123, as a template. The macrospheres of Eudragit®S were fabricated using the double emulsion (W1/O/W2) solvent-diffusion technique and then were used as a template to synthesize macrospheres of SBA-15 following acidic hydrolysis. The physicochemical analysis revealed that the SBA-15 has a spherical morphology (SEM) with pores arranged in a hexagonal lattice (TEM). The XRD showed signals at 0.71, 0.88 y 2.03 °2θ, that were indexed at the Miller indices (100), (110), (200). Nitrogen adsorption-desorption isotherms (type IV, H3) demonstrated mesoporous characteristics with a pore size of 9.3 nm, a wall thickness of 3 nm, a pore volume of 0.7538 cm³g−1, and a surface area of 640 m²g−1. These SBA-15 macrospheres also showed a zero-order release of ibuprofen. The SBA-15 formation using Eudragit®S macrospheres suggests that P123 on the macrosphere acts as a spherical core, as shown by FT-IR analysis. The acid-resistant copolymer maintained macrosphere integrity, enabling the assembly of the SBA-15 mesostructure in a 24-hour manufacturing time under acidic conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Assembly of Celastrol to Zeolitic Imidazolate Framework-8 by Coordination as a Novel Drug Delivery Strategy for Cancer Therapy.
IF 4.6 3区 材料科学ACS Applied Energy MaterialsPub Date : 2022-08-29 DOI: 10.3390/ph15091076
Na Wang, Yifan Li, Fei He, Susu Liu, Yuan Liu, Jinting Peng, Jiahui Liu, Changyuan Yu, Shihui Wang
来源期刊
Journal of Porous Materials
Journal of Porous Materials 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.70%
发文量
203
审稿时长
2.6 months
期刊介绍: The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials. Porous materials include microporous materials with 50 nm pores. Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.
期刊最新文献
Unveiling N-doped carbon nitride aerogel for efficient electrocatalytic water splitting application Preparation of MIL-53(Cr) and MIL-101(Cr)/reduced graphene oxide/polyaniline composites for Cr(VI) adsorption Direct thermal reduction of Ni/Hβ and its improved catalytic performance with stability in hydroalkylation of benzene Facile preparation of nitrogen, oxygen and sulfur co-doped porous carbon for zinc-ion hybrid capacitor Amino-functionalized core–shell magnetic nanocomposites: synthesis, characterization, and adsorption mechanism towards bisphenol A in water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1