Metric-affine cosmological models and the inverse problem of the calculus of variations. Part II: Variational bootstrapping of the \(\Lambda \)CDM model
{"title":"Metric-affine cosmological models and the inverse problem of the calculus of variations. Part II: Variational bootstrapping of the \\(\\Lambda \\)CDM model","authors":"Ludovic Ducobu, Nicoleta Voicu","doi":"10.1140/epjc/s10052-025-13790-1","DOIUrl":null,"url":null,"abstract":"<div><p>The method of variational bootstrapping, based on canonical variational completion, allows one to construct a Lagrangian for a physical theory depending on two sets of field variables, starting from a guess of the field equations for only one such set. This setup is particularly appealing for the construction of modified theories of gravity, since one can take lessons from GR for an “educated guess” of the metric field equations; the field equations for the other fields are then fixed by the obtained Lagrangian (up to terms that are completely independent from the metric tensor). In the present paper, we apply variational bootstrapping to determine metric-affine models which are, in a variational sense, closest to the <span>\\(\\Lambda \\)</span>CDM model of cosmology. Starting from an “educated guess” that formally resembles the Einstein field equations with a cosmological “constant” (actually, a scalar function built from the metric and the connection) and a dark matter term, the method then allows to find “corrected” metric equations and to “bootstrap” the connection field equations. Lagrangians obtained via this method, though imposing some restricting criteria, still encompass a wide variety of metric-affine models. In particular, they allow for a subclass of quadratic metric-affine theories restricted to linear terms in the curvature tensor.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13790-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13790-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
The method of variational bootstrapping, based on canonical variational completion, allows one to construct a Lagrangian for a physical theory depending on two sets of field variables, starting from a guess of the field equations for only one such set. This setup is particularly appealing for the construction of modified theories of gravity, since one can take lessons from GR for an “educated guess” of the metric field equations; the field equations for the other fields are then fixed by the obtained Lagrangian (up to terms that are completely independent from the metric tensor). In the present paper, we apply variational bootstrapping to determine metric-affine models which are, in a variational sense, closest to the \(\Lambda \)CDM model of cosmology. Starting from an “educated guess” that formally resembles the Einstein field equations with a cosmological “constant” (actually, a scalar function built from the metric and the connection) and a dark matter term, the method then allows to find “corrected” metric equations and to “bootstrap” the connection field equations. Lagrangians obtained via this method, though imposing some restricting criteria, still encompass a wide variety of metric-affine models. In particular, they allow for a subclass of quadratic metric-affine theories restricted to linear terms in the curvature tensor.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.