Big Bang in dipole cosmology

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS The European Physical Journal C Pub Date : 2025-01-31 DOI:10.1140/epjc/s10052-025-13799-6
A. Allahyari, E. Ebrahimian, R. Mondol, M. M. Sheikh-Jabbari
{"title":"Big Bang in dipole cosmology","authors":"A. Allahyari,&nbsp;E. Ebrahimian,&nbsp;R. Mondol,&nbsp;M. M. Sheikh-Jabbari","doi":"10.1140/epjc/s10052-025-13799-6","DOIUrl":null,"url":null,"abstract":"<div><p>We continue the study of dipole cosmology framework put forward in Krishnan et al. (JCAP 07:020, 2023), a beyond FLRW setting that has a preferred direction in the metric which may be associated with a cosmological tilt, a cosmic dipole. In this setup the shear and the tilt can be positive or negative given the dipole direction. We thoroughly analyze evolution of the universe in this setting, particularly focusing on the behaviour near the Big Bang (BB). We first analyze a single fluid model with a generic constant equation of state <i>w</i>. While details of the behavior near the BB depends on <i>w</i> and the other initial conditions, we find that when the shear is negative we have a shear dominated BB singularity, whereas for a positive shear we have a much milder singularity, the whimper singularity (Ellis and King in Commun Math Phys 38:119–156, 1974), at which the tilt blows up while curvature invariants remain finite. We then consider dipole <span>\\(\\Lambda \\)</span>CDM model which besides the shear has two tilt parameters, one for radiation and one for the pressureless matter. For positive (negative) shear we again find whimper (curvature) singularity near the BB. Moreover, when the tilt parameters have opposite signs, the shear can change sign from negative to positive in the course of evolution of the Universe. We show that the relative tilt of the radiation and the matter generically remains sizable at late times.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 2","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-13799-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-13799-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

We continue the study of dipole cosmology framework put forward in Krishnan et al. (JCAP 07:020, 2023), a beyond FLRW setting that has a preferred direction in the metric which may be associated with a cosmological tilt, a cosmic dipole. In this setup the shear and the tilt can be positive or negative given the dipole direction. We thoroughly analyze evolution of the universe in this setting, particularly focusing on the behaviour near the Big Bang (BB). We first analyze a single fluid model with a generic constant equation of state w. While details of the behavior near the BB depends on w and the other initial conditions, we find that when the shear is negative we have a shear dominated BB singularity, whereas for a positive shear we have a much milder singularity, the whimper singularity (Ellis and King in Commun Math Phys 38:119–156, 1974), at which the tilt blows up while curvature invariants remain finite. We then consider dipole \(\Lambda \)CDM model which besides the shear has two tilt parameters, one for radiation and one for the pressureless matter. For positive (negative) shear we again find whimper (curvature) singularity near the BB. Moreover, when the tilt parameters have opposite signs, the shear can change sign from negative to positive in the course of evolution of the Universe. We show that the relative tilt of the radiation and the matter generically remains sizable at late times.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
期刊最新文献
New physics in spin entanglement The impact of compact object deformation on thin accretion disk properties Further study of \(c\bar{c}c\bar{c}\) system within a chiral quark model Finding excesses in model parameter space Charged spherically symmetric and slowly rotating charged black hole solutions in bumblebee gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1