Graphene is neither relativistic nor non-relativistic: thermodynamics aspects

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Pramana Pub Date : 2025-01-30 DOI:10.1007/s12043-024-02888-y
Thandar Zaw Win, Cho Win Aung, Gaurav Khandal, Sabyasachi Ghosh
{"title":"Graphene is neither relativistic nor non-relativistic: thermodynamics aspects","authors":"Thandar Zaw Win,&nbsp;Cho Win Aung,&nbsp;Gaurav Khandal,&nbsp;Sabyasachi Ghosh","doi":"10.1007/s12043-024-02888-y","DOIUrl":null,"url":null,"abstract":"<div><p>Discovery of electron hydrodynamics in graphene systems has opened a new scope of theoretical research in condensed matter physics, which was traditionally well cultivated in science and engineering as a non-relativistic hydrodynamics and in high energy nuclear and astrophysics as relativistic hydrodynamics. Electrons in graphene follow neither non-relativistic nor relativistic hydrodynamics. Similar to other hydrodynamical descriptions, the energy–momentum tensor of graphene also has an ideal component and a dissipating component, but in an unconventional way, so popularly, it is sometimes called as unconventional hydrodynamics. The unconventional part of the dissipating component for the energy–momentum tensor is recently addressed in <i>Phys. Rev. B</i> <b>108</b>, 235172 (2023) but its ideal component, which is connected with the thermodynamics of graphene, has not been zoomed in a very systematic way. This article has gone through systematic microscopic calculations of thermodynamical quantities like pressure, energy density, etc., of electron-fluid in graphene and compared with the corresponding estimations for non-relativistic and ultra-relativistic cases. We have sketched the temperature and Fermi energy dependency of electron thermodynamics for graphene and other cases where the transition from Fermi liquid to Dirac fluid domain is explored. An equivalent transition for quark matter is also discussed. Interestingly, an enhancement of specific heat within the low-temperature and Fermi energy region is found, which may be connected to the recently observed Wiedemann–Franz law violation.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02888-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Discovery of electron hydrodynamics in graphene systems has opened a new scope of theoretical research in condensed matter physics, which was traditionally well cultivated in science and engineering as a non-relativistic hydrodynamics and in high energy nuclear and astrophysics as relativistic hydrodynamics. Electrons in graphene follow neither non-relativistic nor relativistic hydrodynamics. Similar to other hydrodynamical descriptions, the energy–momentum tensor of graphene also has an ideal component and a dissipating component, but in an unconventional way, so popularly, it is sometimes called as unconventional hydrodynamics. The unconventional part of the dissipating component for the energy–momentum tensor is recently addressed in Phys. Rev. B 108, 235172 (2023) but its ideal component, which is connected with the thermodynamics of graphene, has not been zoomed in a very systematic way. This article has gone through systematic microscopic calculations of thermodynamical quantities like pressure, energy density, etc., of electron-fluid in graphene and compared with the corresponding estimations for non-relativistic and ultra-relativistic cases. We have sketched the temperature and Fermi energy dependency of electron thermodynamics for graphene and other cases where the transition from Fermi liquid to Dirac fluid domain is explored. An equivalent transition for quark matter is also discussed. Interestingly, an enhancement of specific heat within the low-temperature and Fermi energy region is found, which may be connected to the recently observed Wiedemann–Franz law violation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
期刊最新文献
Gravity-driven thermally stratified nanofluid flow past a permeable stretching surface Charged relativistic model utilising embedding condition and quadratic equation of state Heat and mass transfer analysis for thin film lubricated flow of microbe-infused viscoelastic nanofluid Lump wave, breather wave and other abundant wave solutions to the (2 + 1)-dimensional Sawada–Kotera–Kadomtsev Petviashvili equation of fluid mechanics Enhanced UV and IR filtering with PMMA\(/\)perylene-coated FTO glass for energy-efficient luminescent solar concentrator windows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1