A hydrogel miscible azelaic acid-ionic liquids for the treatment of acne vulgaris: Enhanced solubility and skin retention

Zhezheng Fang, Xianzi Zheng, Yanyun Ma, Wei Wu, Yi Lu
{"title":"A hydrogel miscible azelaic acid-ionic liquids for the treatment of acne vulgaris: Enhanced solubility and skin retention","authors":"Zhezheng Fang,&nbsp;Xianzi Zheng,&nbsp;Yanyun Ma,&nbsp;Wei Wu,&nbsp;Yi Lu","doi":"10.1002/mba2.70000","DOIUrl":null,"url":null,"abstract":"<p>Azelaic acid (AzA) is a natural dicarboxylic acid used to treat acne vulgaris but is greatly limited by poor aqueous solubility. This study aims to enhance the solubility and skin retention of AzA by ionic liquids (ILs). AzA-ILs were synthesized by a decomposition reaction with amine compounds. AzA-ILs synthesized with Tris-(hydroxymethyl)-aminomethane ([AzA][Tris]) and meglumine ([AzA][Meg]) at a molar ratio of 1:2 were liquid at room temperature and miscible with water. <sup>1</sup>H-NMR and FT-IR confirmed the synthesis of AzA-ILs. [AzA][Tris] got higher transdermal transport and skin retention of AzA than [AzA][Meg]. ZEN has a lower viscosity and better spreadability than Carbomer and thus was adopted as the gel matrix. [AzA][Tris] was also miscible with the ZEN matrix at any concentration. Hydrogels containing 10% (w/w) AzA exhibited the highest transdermal transport and skin retention among hydrogels with higher or lower concentrations of AzA. AzA-IL hydrogel (10%, w/w) obtained similar therapeutic efficacy but lower skin irritation than the Finacea® (a marketed hydrogel of 15% AzA). In conclusion, ILs greatly enhanced the aqueous solubility of AzA to develop transparent hydrogel and skin retention to achieve good treatment for acne vulgaris.</p>","PeriodicalId":100901,"journal":{"name":"MedComm – Biomaterials and Applications","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mba2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Biomaterials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mba2.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Azelaic acid (AzA) is a natural dicarboxylic acid used to treat acne vulgaris but is greatly limited by poor aqueous solubility. This study aims to enhance the solubility and skin retention of AzA by ionic liquids (ILs). AzA-ILs were synthesized by a decomposition reaction with amine compounds. AzA-ILs synthesized with Tris-(hydroxymethyl)-aminomethane ([AzA][Tris]) and meglumine ([AzA][Meg]) at a molar ratio of 1:2 were liquid at room temperature and miscible with water. 1H-NMR and FT-IR confirmed the synthesis of AzA-ILs. [AzA][Tris] got higher transdermal transport and skin retention of AzA than [AzA][Meg]. ZEN has a lower viscosity and better spreadability than Carbomer and thus was adopted as the gel matrix. [AzA][Tris] was also miscible with the ZEN matrix at any concentration. Hydrogels containing 10% (w/w) AzA exhibited the highest transdermal transport and skin retention among hydrogels with higher or lower concentrations of AzA. AzA-IL hydrogel (10%, w/w) obtained similar therapeutic efficacy but lower skin irritation than the Finacea® (a marketed hydrogel of 15% AzA). In conclusion, ILs greatly enhanced the aqueous solubility of AzA to develop transparent hydrogel and skin retention to achieve good treatment for acne vulgaris.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Choline hydroxide
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Design of strong and tough biofibers and their biomedical applications One-pot synthesis of tunable fluorescent polyethylene glycol (PEG) polymer for antimicrobial and anticancer theranostics Biofilm formation in cardiovascular infection and bioengineering approaches for treatment and prevention Simultaneous detection of dual targets Escherichia coli and Salmonella enteritidis using enzyme-free strand displacement reaction The potency of aloe emodin-loaded nanoparticles in conjunction with IFN-γ for the pretreatment of mesenchymal stem cells with class II transactivator silence to alleviate severe acute pancreatitis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1