{"title":"A Multifrequency Data Fusion Deep Learning Model for Carbon Price Prediction","authors":"Canran Xiao, Yongmei Liu","doi":"10.1002/for.3198","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In response to the global need for effective management of carbon emissions and alignment with sustainable development goals, predicting carbon trading prices accurately is critical. This study introduces a multifrequency data fusion carbon price prediction model (MFF-CPPM), addressing the nonlinear characteristics of carbon trading prices and inconsistent feature factor frequencies. The MFF-CPPM consists of a feature-extraction frontend, a multifrequency data fusion transformer, and a fusion regression layer, offering a novel methodological approach in forecasting studies. The model's validity was tested in Guangdong, China's largest carbon trading pilot market. The results demonstrated that the MFF-CPPM outperformed baseline models in terms of carbon price-prediction accuracy and trend forecasting. Additional trials conducted in Hubei and Beijing confirmed the model's robustness and generalization capabilities, providing valuable evidence of its effectiveness and reliability across varying market contexts. This study presents a novel predictive model for carbon trading prices, with a unique capability to harness data at differing frequencies. The MFF-CPPM not only enhances forecasting accuracy but also offers an innovative approach to effectively incorporate multifrequency information. This advancement paves the way for flexible forecasting models in any scenario where data arrive at differing frequencies.</p>\n </div>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"44 2","pages":"436-458"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3198","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the global need for effective management of carbon emissions and alignment with sustainable development goals, predicting carbon trading prices accurately is critical. This study introduces a multifrequency data fusion carbon price prediction model (MFF-CPPM), addressing the nonlinear characteristics of carbon trading prices and inconsistent feature factor frequencies. The MFF-CPPM consists of a feature-extraction frontend, a multifrequency data fusion transformer, and a fusion regression layer, offering a novel methodological approach in forecasting studies. The model's validity was tested in Guangdong, China's largest carbon trading pilot market. The results demonstrated that the MFF-CPPM outperformed baseline models in terms of carbon price-prediction accuracy and trend forecasting. Additional trials conducted in Hubei and Beijing confirmed the model's robustness and generalization capabilities, providing valuable evidence of its effectiveness and reliability across varying market contexts. This study presents a novel predictive model for carbon trading prices, with a unique capability to harness data at differing frequencies. The MFF-CPPM not only enhances forecasting accuracy but also offers an innovative approach to effectively incorporate multifrequency information. This advancement paves the way for flexible forecasting models in any scenario where data arrive at differing frequencies.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.