Gabriella D. Hartman, Anbukkarasi Muniyandi, Kamakshi Sishtla, Eyram K. Kpenu, William P. Miller, Bryan A. Kaplan, Leo A. Kim, Sheng Liu, Jun Wan, Xiaoping Qi, Michael E. Boulton, Mark R. Kelley, Timothy W. Corson
{"title":"Ref-1 redox activity regulates retinal neovascularization by modulating transcriptional activation of HIF-1α","authors":"Gabriella D. Hartman, Anbukkarasi Muniyandi, Kamakshi Sishtla, Eyram K. Kpenu, William P. Miller, Bryan A. Kaplan, Leo A. Kim, Sheng Liu, Jun Wan, Xiaoping Qi, Michael E. Boulton, Mark R. Kelley, Timothy W. Corson","doi":"10.1096/fj.202401989RR","DOIUrl":null,"url":null,"abstract":"<p>Retinal neovascularization impairs visual function and is a hallmark of several neovascular eye diseases, including retinopathy of prematurity (ROP) and proliferative diabetic retinopathy (PDR). Current treatments include intravitreal injections of anti-vascular endothelial growth factor (VEGF) biologics, but these therapeutics are often accompanied by high treatment burden and resistance to therapy. Prior studies indicate that APE1/Ref-1, a multifunctional protein with both endonuclease (APE1) and redox-mediated transcriptional regulatory activity (Ref-1), activates multiple pro-angiogenic and pro-inflammatory signaling pathways by chemically reducing key cysteine residues in transcription factors, thereby activating them. Here, we investigated the previously unexplored role of Ref-1 in retinal neovascularization. We demonstrate that Ref-1 is highly expressed in endothelial cells in human PDR and in the oxygen-induced retinopathy (OIR) mouse model of retinal neovascularization. Ref-1 is also highly expressed in microglia and astrocytes in OIR. A small molecule Ref-1 redox inhibitor, APX2009, decreased retinal neovascularization in OIR after systemic delivery. In vitro, hypoxic endothelial cells did not exhibit upregulation of Ref-1 but rather increased Ref-1 nuclear localization. APX2009 decreased hypoxic endothelial cell proliferation and HIF-1α transcriptional activation. Thus, Ref-1 redox activity may be a novel therapeutic target for the treatment of retinal neovascularization, making APX2009 a promising systemic therapeutic approach for the treatment of vascular retinopathies such as ROP and PDR.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202401989RR","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401989RR","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Retinal neovascularization impairs visual function and is a hallmark of several neovascular eye diseases, including retinopathy of prematurity (ROP) and proliferative diabetic retinopathy (PDR). Current treatments include intravitreal injections of anti-vascular endothelial growth factor (VEGF) biologics, but these therapeutics are often accompanied by high treatment burden and resistance to therapy. Prior studies indicate that APE1/Ref-1, a multifunctional protein with both endonuclease (APE1) and redox-mediated transcriptional regulatory activity (Ref-1), activates multiple pro-angiogenic and pro-inflammatory signaling pathways by chemically reducing key cysteine residues in transcription factors, thereby activating them. Here, we investigated the previously unexplored role of Ref-1 in retinal neovascularization. We demonstrate that Ref-1 is highly expressed in endothelial cells in human PDR and in the oxygen-induced retinopathy (OIR) mouse model of retinal neovascularization. Ref-1 is also highly expressed in microglia and astrocytes in OIR. A small molecule Ref-1 redox inhibitor, APX2009, decreased retinal neovascularization in OIR after systemic delivery. In vitro, hypoxic endothelial cells did not exhibit upregulation of Ref-1 but rather increased Ref-1 nuclear localization. APX2009 decreased hypoxic endothelial cell proliferation and HIF-1α transcriptional activation. Thus, Ref-1 redox activity may be a novel therapeutic target for the treatment of retinal neovascularization, making APX2009 a promising systemic therapeutic approach for the treatment of vascular retinopathies such as ROP and PDR.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.