Plasmonic Nanocomposite for Visible Light-Modulated Bimorph-Actuator

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-11-04 DOI:10.1002/admt.202401037
Partha Kumbhakar, Santhosh Narendhiran, Soumen Midya, Monsur Islam, Manoj Balachandran, Abhishek Kumar Singh
{"title":"Plasmonic Nanocomposite for Visible Light-Modulated Bimorph-Actuator","authors":"Partha Kumbhakar,&nbsp;Santhosh Narendhiran,&nbsp;Soumen Midya,&nbsp;Monsur Islam,&nbsp;Manoj Balachandran,&nbsp;Abhishek Kumar Singh","doi":"10.1002/admt.202401037","DOIUrl":null,"url":null,"abstract":"<p>Soft actuators have great potential applications in sophisticated movement and sensitive devices due to their flexible nature, good interaction, and precise control. However, existing carbon-based optical actuators are limited in their response under visible light irradiation. The limited visible light absorbance of the carbon nanostructure brought the metallic nanoparticle into the soft actuators that can absorb visible light. This study introduces a new type of plasmonic photothermal-bimorph actuator, using graphene oxide (GO), reduced graphene oxide (rGO), and silver nanorods (Ag NRs) to overcome the limitations of traditional optical actuators. The bimorph film is actuated by visible and near-infrared light stimuli with various power densities showing reversible deformation behavior. The actuator shows significant bending associated with a ≈50° change in bending angle under visible light irradiation with a response time of ≈5 ± 1 sec. Furthermore, a smart photo-controlled non-contact switch is fabricated based on photo-thermal conversion properties, demonstrating perfect integration of plasmonic bimorph actuators. The density functional theory based molecular dynamics calculations provide an additional understanding of the bending of actuators under external stimulus. Using illustrative demonstrations of actuators, these results hint at a method for generating multipurpose visible light-based soft robots, supporting a new approach to developing an optical locking system.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 3","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admt.202401037","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soft actuators have great potential applications in sophisticated movement and sensitive devices due to their flexible nature, good interaction, and precise control. However, existing carbon-based optical actuators are limited in their response under visible light irradiation. The limited visible light absorbance of the carbon nanostructure brought the metallic nanoparticle into the soft actuators that can absorb visible light. This study introduces a new type of plasmonic photothermal-bimorph actuator, using graphene oxide (GO), reduced graphene oxide (rGO), and silver nanorods (Ag NRs) to overcome the limitations of traditional optical actuators. The bimorph film is actuated by visible and near-infrared light stimuli with various power densities showing reversible deformation behavior. The actuator shows significant bending associated with a ≈50° change in bending angle under visible light irradiation with a response time of ≈5 ± 1 sec. Furthermore, a smart photo-controlled non-contact switch is fabricated based on photo-thermal conversion properties, demonstrating perfect integration of plasmonic bimorph actuators. The density functional theory based molecular dynamics calculations provide an additional understanding of the bending of actuators under external stimulus. Using illustrative demonstrations of actuators, these results hint at a method for generating multipurpose visible light-based soft robots, supporting a new approach to developing an optical locking system.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体纳米复合材料用于可见光调制双晶致动器
软致动器具有柔性、交互性好、控制精确等特点,在复杂运动和敏感装置中具有很大的应用潜力。然而,现有的碳基光学致动器在可见光照射下的响应受到限制。由于碳纳米结构对可见光的吸收能力有限,金属纳米颗粒被引入到能够吸收可见光的软致动器中。采用氧化石墨烯(GO)、还原氧化石墨烯(rGO)和银纳米棒(Ag NRs)等材料,克服了传统光学致动器的局限性,提出了一种新型等离子体光热双晶片致动器。双晶片在不同功率密度的可见光和近红外光刺激下表现出可逆的变形行为。在可见光照射下,致动器弯曲角度变化约50°,响应时间约5±1秒。此外,基于光热转换特性,制作了智能光控非接触开关,展示了等离子体双晶片致动器的完美集成。基于密度泛函理论的分子动力学计算为执行器在外界刺激下的弯曲提供了一个额外的理解。使用致动器的说明性演示,这些结果暗示了一种生成多用途可见光软机器人的方法,支持开发光学锁定系统的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
Issue Information Wearable Hollow-Groove Microneedle Array for Wirelessly Controlled, on-Demand Tunable Transdermal Drug Delivery (Adv. Mater. Technol. 3/2026) Modeling and Optimization of Biomimetic Magnetic Cilia for Multifunctional Tactile Sensor (Adv. Mater. Technol. 3/2026) Molecular Layer Deposited Aluminum-Based Hybrid Resist for High-Resolution Nanolithography and Direct Ultra-High Aspect Ratio Pattern Transfer (Adv. Mater. Technol. 3/2026) Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1