{"title":"Solar Irradiance Forecasting Using Temporal Fusion Transformers","authors":"Abdulaziz Alorf, Muhammad Usman Ghani Khan","doi":"10.1155/er/3534500","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Global climate change has intensified the search for renewable energy sources. Solar power is a cost-effective option for electricity generation. Accurate energy forecasting is crucial for efficient planning. While various techniques have been introduced for energy forecasting, transformer-based models are effective for capturing long-range dependencies in data. This study proposes <i>N</i> hours-ahead solar irradiance forecasting framework based on variational mode decomposition (VMD) for handling meteorological data and a modified temporal fusion transformer (TFT) for forecasting solar irradiance. The proposed model decomposes raw solar irradiance sequences into intrinsic mode functions (IMFs) using VMD and optimizes the TFT using a variable screening network and a gated recurrent unit (GRU)-based encoder–decoder. Our study specifically targets the 1-h as well as different forecasting horizons for solar irradiance. The resulting deep learning model offers insights, including the prioritization of solar irradiance subsequences and an analysis of various forecasting window sizes. An empirical study shows that our proposed method has achieved high performance compared to other time series models, such as artificial neural network (ANN), long short-term memory (LSTM), CNN–LSTM, CNN–LSTM with temporal attention (CNN–LSTM-t), transformer, and the original TFT model.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/3534500","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/3534500","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Global climate change has intensified the search for renewable energy sources. Solar power is a cost-effective option for electricity generation. Accurate energy forecasting is crucial for efficient planning. While various techniques have been introduced for energy forecasting, transformer-based models are effective for capturing long-range dependencies in data. This study proposes N hours-ahead solar irradiance forecasting framework based on variational mode decomposition (VMD) for handling meteorological data and a modified temporal fusion transformer (TFT) for forecasting solar irradiance. The proposed model decomposes raw solar irradiance sequences into intrinsic mode functions (IMFs) using VMD and optimizes the TFT using a variable screening network and a gated recurrent unit (GRU)-based encoder–decoder. Our study specifically targets the 1-h as well as different forecasting horizons for solar irradiance. The resulting deep learning model offers insights, including the prioritization of solar irradiance subsequences and an analysis of various forecasting window sizes. An empirical study shows that our proposed method has achieved high performance compared to other time series models, such as artificial neural network (ANN), long short-term memory (LSTM), CNN–LSTM, CNN–LSTM with temporal attention (CNN–LSTM-t), transformer, and the original TFT model.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system