Ionospheric Conductances at the Giant Planets of the Solar System: A Comparative Study of Ionization Sources and the Impact of Meteoric Ions

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2025-01-05 DOI:10.1029/2024JA033061
Noé Clément, Yuki Nakamura, Michel Blanc, Yuxian Wang, Sariah Al Saati
{"title":"Ionospheric Conductances at the Giant Planets of the Solar System: A Comparative Study of Ionization Sources and the Impact of Meteoric Ions","authors":"Noé Clément,&nbsp;Yuki Nakamura,&nbsp;Michel Blanc,&nbsp;Yuxian Wang,&nbsp;Sariah Al Saati","doi":"10.1029/2024JA033061","DOIUrl":null,"url":null,"abstract":"<p>The dynamics of giant planet magnetospheres is controlled by a complex interplay between their fast rotation, their interaction with the solar wind, and their diverse internal plasma and momentum sources. In the ionosphere, the Hall and Pedersen conductances are two key parameters that regulate the intensity of currents coupling the magnetosphere and the ionosphere, and the rate of angular momentum transfer and power carried by these currents. We perform a comparative study of Hall and Pedersen conductivities and conductances in the four giant planets of our Solar System - Jupiter, Saturn, Uranus and Neptune. We use a generic ionospheric model (restraining the studied ions to <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <mn>3</mn>\n <mo>+</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\mathrm{H}}_{3}^{+}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mtext>CH</mtext>\n <mn>5</mn>\n <mo>+</mo>\n </msubsup>\n </mrow>\n <annotation> ${\\text{CH}}_{5}^{+}$</annotation>\n </semantics></math>, and meteoric ions) to study the dependence of conductances on the structure and composition of these planets' upper atmospheres and on the main ionization sources (photoionization, ionization by precipitating electrons, and meteoroid ablation). After checking that our model reproduces the conclusions of Nakamura et al. (2022), https://doi.org/10.1029/2022ja030312 at Jupiter, that is, the contribution of meteoric ions to the height-integrated conductances is non-negligible, we show that this contribution could also be non-negligible at Saturn, Uranus and Neptune, compared with ionization processes caused by precipitating electrons of energies lower than a few keV (typical energies on these planets). However, because of their weaker magnetic field, the conductive layer of these planets is higher than the layer where meteoric ions are mainly produced, limiting their role in magnetosphere-ionosphere coupling.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033061","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamics of giant planet magnetospheres is controlled by a complex interplay between their fast rotation, their interaction with the solar wind, and their diverse internal plasma and momentum sources. In the ionosphere, the Hall and Pedersen conductances are two key parameters that regulate the intensity of currents coupling the magnetosphere and the ionosphere, and the rate of angular momentum transfer and power carried by these currents. We perform a comparative study of Hall and Pedersen conductivities and conductances in the four giant planets of our Solar System - Jupiter, Saturn, Uranus and Neptune. We use a generic ionospheric model (restraining the studied ions to H 3 + ${\mathrm{H}}_{3}^{+}$ , CH 5 + ${\text{CH}}_{5}^{+}$ , and meteoric ions) to study the dependence of conductances on the structure and composition of these planets' upper atmospheres and on the main ionization sources (photoionization, ionization by precipitating electrons, and meteoroid ablation). After checking that our model reproduces the conclusions of Nakamura et al. (2022), https://doi.org/10.1029/2022ja030312 at Jupiter, that is, the contribution of meteoric ions to the height-integrated conductances is non-negligible, we show that this contribution could also be non-negligible at Saturn, Uranus and Neptune, compared with ionization processes caused by precipitating electrons of energies lower than a few keV (typical energies on these planets). However, because of their weaker magnetic field, the conductive layer of these planets is higher than the layer where meteoric ions are mainly produced, limiting their role in magnetosphere-ionosphere coupling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
The Spreading of Magnetic Reconnection X-Line in Particle-In-Cell Simulations– Mechanism and the Effect of Drift-Kink Instability A 3-D FDTD Methodology for Modeling the Propagation of VLF Whistler Mode PLHR Waves Through the Ionosphere “Polar” Substorms During Slow Solar Wind Characteristics of Wave-Particle Power Transfer as a Function of Electron Pitch Angle in Nonlinear Frequency Chirping Jupiter's Auroral Ionosphere: Juno Microwave Radiometer Observations of Energetic Electron Precipitation Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1