Non-linear time history analyses of a rigid block isolated with unbonded fiber-reinforced elastomeric isolators (UFREIs): A comparison between 3D finite element and phenomenological models
Hediyeh Sheikh, Gaetano Pianese, Rajeev Ruparathna, Niel C. Van Engelen, Gabriele Milani
{"title":"Non-linear time history analyses of a rigid block isolated with unbonded fiber-reinforced elastomeric isolators (UFREIs): A comparison between 3D finite element and phenomenological models","authors":"Hediyeh Sheikh, Gaetano Pianese, Rajeev Ruparathna, Niel C. Van Engelen, Gabriele Milani","doi":"10.1002/eqe.4263","DOIUrl":null,"url":null,"abstract":"<p>Numerical modeling represents a pivotal tool in the seismic analysis and design of structural systems, enabling the detailed prediction and examination of structural responses under seismic loading. This research conducts a comparative analysis of two numerical modeling approaches aimed at simulating the seismic response of unbonded fiber-reinforced elastomeric isolators (UFREIs). The research focuses on a finite element (FE) model developed using Abaqus and a developed phenomenological model implemented in OpenSees, outlining the development and calibration processes for each. The FE model is developed based on simple rubber material testing data, while the phenomenological model is calibrated using experimental results from cyclic shear tests conducted on the UFREI device and the FE model. The primary objective of this study is to assess the effectiveness of these modeling approaches in predicting UFREI behavior under seismic conditions. This evaluation entails comparing model predictions with experimental data obtained from unidirectional shake table tests performed on a rigid block isolated by two UFREIs. This paper highlights the distinct advantages and limitations of each model in simulating UFREI dynamic responses during seismic events. Furthermore, it provides insights into the modeling techniques and discusses the computational demands and data requirements of each model, thereby aiding in their application to various aspects of seismic analysis and design.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 2","pages":"449-470"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eqe.4263","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4263","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical modeling represents a pivotal tool in the seismic analysis and design of structural systems, enabling the detailed prediction and examination of structural responses under seismic loading. This research conducts a comparative analysis of two numerical modeling approaches aimed at simulating the seismic response of unbonded fiber-reinforced elastomeric isolators (UFREIs). The research focuses on a finite element (FE) model developed using Abaqus and a developed phenomenological model implemented in OpenSees, outlining the development and calibration processes for each. The FE model is developed based on simple rubber material testing data, while the phenomenological model is calibrated using experimental results from cyclic shear tests conducted on the UFREI device and the FE model. The primary objective of this study is to assess the effectiveness of these modeling approaches in predicting UFREI behavior under seismic conditions. This evaluation entails comparing model predictions with experimental data obtained from unidirectional shake table tests performed on a rigid block isolated by two UFREIs. This paper highlights the distinct advantages and limitations of each model in simulating UFREI dynamic responses during seismic events. Furthermore, it provides insights into the modeling techniques and discusses the computational demands and data requirements of each model, thereby aiding in their application to various aspects of seismic analysis and design.
期刊介绍:
Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following:
ground motions for analysis and design
geotechnical earthquake engineering
probabilistic and deterministic methods of dynamic analysis
experimental behaviour of structures
seismic protective systems
system identification
risk assessment
seismic code requirements
methods for earthquake-resistant design and retrofit of structures.