{"title":"Uncertainty quantification for seismic response using dimensionality reduction-based stochastic simulator","authors":"Jungho Kim, Ziqi Wang","doi":"10.1002/eqe.4265","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a stochastic simulator for seismic uncertainty quantification, which is crucial for performance-based earthquake engineering. The proposed simulator extends the recently developed dimensionality reduction-based surrogate modeling method (DR-SM) to address high-dimensional ground motion uncertainties and the high computational demands associated with nonlinear response history analyses. By integrating physics-based dimensionality reduction with multivariate conditional distribution models, the proposed simulator efficiently propagates seismic input into multivariate response quantities of interest. The simulator can incorporate both aleatory and epistemic uncertainties and does not assume distribution models for the seismic responses. The method is demonstrated through three finite element building models subjected to synthetic and recorded ground motions. The proposed method effectively predicts multivariate seismic responses and quantifies uncertainties, including correlations among responses.</p>","PeriodicalId":11390,"journal":{"name":"Earthquake Engineering & Structural Dynamics","volume":"54 2","pages":"471-490"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering & Structural Dynamics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eqe.4265","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a stochastic simulator for seismic uncertainty quantification, which is crucial for performance-based earthquake engineering. The proposed simulator extends the recently developed dimensionality reduction-based surrogate modeling method (DR-SM) to address high-dimensional ground motion uncertainties and the high computational demands associated with nonlinear response history analyses. By integrating physics-based dimensionality reduction with multivariate conditional distribution models, the proposed simulator efficiently propagates seismic input into multivariate response quantities of interest. The simulator can incorporate both aleatory and epistemic uncertainties and does not assume distribution models for the seismic responses. The method is demonstrated through three finite element building models subjected to synthetic and recorded ground motions. The proposed method effectively predicts multivariate seismic responses and quantifies uncertainties, including correlations among responses.
期刊介绍:
Earthquake Engineering and Structural Dynamics provides a forum for the publication of papers on several aspects of engineering related to earthquakes. The problems in this field, and their solutions, are international in character and require knowledge of several traditional disciplines; the Journal will reflect this. Papers that may be relevant but do not emphasize earthquake engineering and related structural dynamics are not suitable for the Journal. Relevant topics include the following:
ground motions for analysis and design
geotechnical earthquake engineering
probabilistic and deterministic methods of dynamic analysis
experimental behaviour of structures
seismic protective systems
system identification
risk assessment
seismic code requirements
methods for earthquake-resistant design and retrofit of structures.