{"title":"MMSE-based passive beamforming for reconfigurable intelligent surface aided millimeter wave MIMO","authors":"Prabhat Raj Gautam, Li Zhang, Pingzhi Fan","doi":"10.1049/cmu2.12873","DOIUrl":null,"url":null,"abstract":"<p>Reconfigurable intelligent surfaces (RISs) have emerged as propitious solution to configure random wireless channel into suitable propagation environment by adjusting a large number of low-cost passive reflecting elements. It is considered that narrowband downlink millimeter wave (mmWave) multiple-input multiple-output (MIMO) communication is aided by deploying an RIS. Large antenna arrays are used to counter the huge propagation loss suffered by the mmWave signals. Hybrid precoding in which precoding is performed in digital and analog domains is employed to reduce the number of costly and power-consuming radio frequency (RF) chains. Passive beamforming at RIS is designed together with precoder and combiner through joint optimization problem to minimize the mean square error between the transmit signal and the estimate of signal at the receiver. The optimization problem is solved by an iterative procedure in which solution to the non-convex reflecting coefficients design problem is approximated by extracting the phases of the solution to unconstrained problem without unit amplitude constraint of the reflecting elements. It is shown that the proposed design principle also applies to the wideband channel. Simulation results show that the proposed design delivers performance better than existing state-of-the-art solutions, but at lower complexity.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12873","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12873","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable intelligent surfaces (RISs) have emerged as propitious solution to configure random wireless channel into suitable propagation environment by adjusting a large number of low-cost passive reflecting elements. It is considered that narrowband downlink millimeter wave (mmWave) multiple-input multiple-output (MIMO) communication is aided by deploying an RIS. Large antenna arrays are used to counter the huge propagation loss suffered by the mmWave signals. Hybrid precoding in which precoding is performed in digital and analog domains is employed to reduce the number of costly and power-consuming radio frequency (RF) chains. Passive beamforming at RIS is designed together with precoder and combiner through joint optimization problem to minimize the mean square error between the transmit signal and the estimate of signal at the receiver. The optimization problem is solved by an iterative procedure in which solution to the non-convex reflecting coefficients design problem is approximated by extracting the phases of the solution to unconstrained problem without unit amplitude constraint of the reflecting elements. It is shown that the proposed design principle also applies to the wideband channel. Simulation results show that the proposed design delivers performance better than existing state-of-the-art solutions, but at lower complexity.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf