Enhancing intrusion detection against denial of service and distributed denial of service attacks: Leveraging extended Berkeley packet filter and machine learning algorithms

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Communications Pub Date : 2025-01-06 DOI:10.1049/cmu2.12879
Nemalikanti Anand, Saifulla M A, Pavan Kumar Aakula, Raveendra Babu Ponnuru, Rizwan Patan, Chegireddy Rama Prakasha Reddy
{"title":"Enhancing intrusion detection against denial of service and distributed denial of service attacks: Leveraging extended Berkeley packet filter and machine learning algorithms","authors":"Nemalikanti Anand,&nbsp;Saifulla M A,&nbsp;Pavan Kumar Aakula,&nbsp;Raveendra Babu Ponnuru,&nbsp;Rizwan Patan,&nbsp;Chegireddy Rama Prakasha Reddy","doi":"10.1049/cmu2.12879","DOIUrl":null,"url":null,"abstract":"<p>As organizations increasingly rely on network services, the prevalence and severity of Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks have emerged as significant threats. The cornerstone of effectively addressing these challenges lies in the timely and precise detection capabilities offered by advanced intrusion detection systems (IDS). Hence, an innovative IDS framework is introduced that seamlessly integrates the extended Berkeley Packet Filter (eBPF) with powerful machine learning algorithms—specifically Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and TwinSVM—enabling unparalleled real-time detection of DDoS attacks. This cutting-edge solution provides a robust and scalable IDS framework to combat DoS and DDoS threats with high efficiency, leveraging eBPF's capabilities within the Linux kernel to bypass typical user space constraints. The methodology encompasses several key steps: (a) Collection of data from the renowned CIC-IDS-2017 repository; (b) Processing the raw data through a meticulous series of steps, including transmission, cleaning, reduction, and discretization; (c) Utilizing an ANOVA F-test for the extraction of critical features from the preprocessed data; (d) Application of various ML algorithms (DT, RF, SVM, and TwinSVM) to analyze the extracted features for potential intrusion; (e) Implementing an eBPF program to capture network traffic and harness trained model parameters for efficient attack detection directly within the kernel. The experimental results reveal outstanding accuracy rates of 99.38%, 99.44%, 88.73%, and 93.82% for DT, RF, SVM, and TwinSVM, respectively, alongside remarkable precision values of 99.71%, 99.65%, 84.31%, and 98.49%. This high-speed, accurate detection model is ideally suited for high-traffic environments such as data centers. Furthermore, its foundational architecture paves the way for future advancements, including the potential integration of eBPF with XDP to achieve even lower-latency packet processing. The experimental code is available at the GitHub repository link: https://github.com/NemalikantiAnand/Project.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12879","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12879","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As organizations increasingly rely on network services, the prevalence and severity of Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks have emerged as significant threats. The cornerstone of effectively addressing these challenges lies in the timely and precise detection capabilities offered by advanced intrusion detection systems (IDS). Hence, an innovative IDS framework is introduced that seamlessly integrates the extended Berkeley Packet Filter (eBPF) with powerful machine learning algorithms—specifically Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and TwinSVM—enabling unparalleled real-time detection of DDoS attacks. This cutting-edge solution provides a robust and scalable IDS framework to combat DoS and DDoS threats with high efficiency, leveraging eBPF's capabilities within the Linux kernel to bypass typical user space constraints. The methodology encompasses several key steps: (a) Collection of data from the renowned CIC-IDS-2017 repository; (b) Processing the raw data through a meticulous series of steps, including transmission, cleaning, reduction, and discretization; (c) Utilizing an ANOVA F-test for the extraction of critical features from the preprocessed data; (d) Application of various ML algorithms (DT, RF, SVM, and TwinSVM) to analyze the extracted features for potential intrusion; (e) Implementing an eBPF program to capture network traffic and harness trained model parameters for efficient attack detection directly within the kernel. The experimental results reveal outstanding accuracy rates of 99.38%, 99.44%, 88.73%, and 93.82% for DT, RF, SVM, and TwinSVM, respectively, alongside remarkable precision values of 99.71%, 99.65%, 84.31%, and 98.49%. This high-speed, accurate detection model is ideally suited for high-traffic environments such as data centers. Furthermore, its foundational architecture paves the way for future advancements, including the potential integration of eBPF with XDP to achieve even lower-latency packet processing. The experimental code is available at the GitHub repository link: https://github.com/NemalikantiAnand/Project.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
期刊最新文献
Compact Dual-Band Microstrip Array Feed Network Using CRLH-TL Power Dividers An Efficient Cluster Based Routing in Wireless Sensor Networks Using Multiobjective-Perturbed Learning and Mutation Strategy Based Artificial Rabbits Optimisation CRAFIC Framework: Multi-Account Collaborative Fraud Detection, Efficient Feature Extraction and Relationship Modelling Combined with CNN-LSTM and Graph Attention Network A RIS-Based Single-Channel Direction-of-Arrival Estimation Method for Communication Signals Physical layer security in satellite communication: State-of-the-art and open problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1