Synergistic effect in liquid metal heartbeat with high-efficiency energy conversion

Droplet Pub Date : 2025-01-06 DOI:10.1002/dro2.161
Shutong Wang, Sicheng Wang, Binbin Zhou, Dongmei Ren, Zhenwei Yu
{"title":"Synergistic effect in liquid metal heartbeat with high-efficiency energy conversion","authors":"Shutong Wang,&nbsp;Sicheng Wang,&nbsp;Binbin Zhou,&nbsp;Dongmei Ren,&nbsp;Zhenwei Yu","doi":"10.1002/dro2.161","DOIUrl":null,"url":null,"abstract":"<p>The phenomenon of liquid metal “heartbeat” oscillation presents intriguing applications in microfluidic devices, drug delivery, and miniature robotics. However, achieving high vibrational kinetic energy outputs in these systems remains challenging. In this study, we developed a graphite ring electrode with V-shaped inner wall that enables wide-ranging control over the oscillation performance based on droplet size and the height of the V-shape. The mechanism driving the heartbeat is defined as a dynamic process involving the transformation of the oxide layer. Through electrochemical analysis, we confirmed three distinct states of the heartbeat and introduced a novel model to elucidate the role of the V-shaped structure in initiating and halting the oscillations. A comprehensive series of experiments explored how various factors, such as droplet volume, voltage, tilt angle, and V-shape height, affect heartbeat performance, achieving a significant conversion from surface energy to vibrational kinetic energy as high as 4732 J m<sup>−2</sup> s<sup>−1</sup>. The increase in energy output is attributed to the synergistic effect of the V-shape height and droplet size on the oscillations. These results not only advance our understanding of liquid metal droplet manipulation but also pave the way for designing high-speed microfluidic pumping systems.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.161","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The phenomenon of liquid metal “heartbeat” oscillation presents intriguing applications in microfluidic devices, drug delivery, and miniature robotics. However, achieving high vibrational kinetic energy outputs in these systems remains challenging. In this study, we developed a graphite ring electrode with V-shaped inner wall that enables wide-ranging control over the oscillation performance based on droplet size and the height of the V-shape. The mechanism driving the heartbeat is defined as a dynamic process involving the transformation of the oxide layer. Through electrochemical analysis, we confirmed three distinct states of the heartbeat and introduced a novel model to elucidate the role of the V-shaped structure in initiating and halting the oscillations. A comprehensive series of experiments explored how various factors, such as droplet volume, voltage, tilt angle, and V-shape height, affect heartbeat performance, achieving a significant conversion from surface energy to vibrational kinetic energy as high as 4732 J m−2 s−1. The increase in energy output is attributed to the synergistic effect of the V-shape height and droplet size on the oscillations. These results not only advance our understanding of liquid metal droplet manipulation but also pave the way for designing high-speed microfluidic pumping systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Inside Back Cover, Volume 4, Number 1, January 2025 Front Cover, Volume 4, Number 1, January 2025 Frontispiece, Volume 4, Number 1, January 2025 Back Cover, Volume 4, Number 1, January 2025
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1