Estimating latent heat flux of subtropical forests using machine learning algorithms

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Meteorological Applications Pub Date : 2025-01-07 DOI:10.1002/met.70023
Harekrushna Sahu, Pramit Kumar Deb Burman, Palingamoorthy Gnanamoorthy, Qinghai Song, Yiping Zhang, Huimin Wang, Yaoliang Chen, Shusen Wang
{"title":"Estimating latent heat flux of subtropical forests using machine learning algorithms","authors":"Harekrushna Sahu,&nbsp;Pramit Kumar Deb Burman,&nbsp;Palingamoorthy Gnanamoorthy,&nbsp;Qinghai Song,&nbsp;Yiping Zhang,&nbsp;Huimin Wang,&nbsp;Yaoliang Chen,&nbsp;Shusen Wang","doi":"10.1002/met.70023","DOIUrl":null,"url":null,"abstract":"<p>Latent heat flux (LE) is a measure of the water exchange between Earth's surface and atmosphere, also known as evapotranspiration. It is a fundamental component in the Earth's energy budget and hydrological cycle and plays an important role in regulating the weather and climate. Moderate Resolution Imaging Spectroradiometer (MODIS) offers a gap-filled biophysical product for LE at 8-day temporal and 500-meter spatial resolutions. Nonetheless, validation against the in situ eddy covariance measurement reveals significant errors in MODIS LE estimation. Our study integrates ground-measured, reanalysis and satellite data to predict LE by leveraging the advantage of the data-driven method. The study draws upon flux data derived from the AsiaFlux database, alongside reanalysis datasets from the Indian Monsoon Data Assimilation and Analysis (IMDAA) and the European Centre for Medium-Range Weather Forecasts (ERA5) products, as well as biophysical measurements from the MODIS satellite. An analysis of the annual water budget, based on ERA5 precipitation data, highlights net positive water balances across the study sites. By harnessing diverse datasets, we employ various machine learning regression algorithms. We find the support vector regression superior to linear, lasso, random forest, adaptive boosting and gradient boosting algorithms. This study highlights the robustness of support vector regression and accentuates the impact of climatic and environmental conditions on model performance, ultimately contributing to more precise predictions of latent heat flux.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"32 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70023","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Latent heat flux (LE) is a measure of the water exchange between Earth's surface and atmosphere, also known as evapotranspiration. It is a fundamental component in the Earth's energy budget and hydrological cycle and plays an important role in regulating the weather and climate. Moderate Resolution Imaging Spectroradiometer (MODIS) offers a gap-filled biophysical product for LE at 8-day temporal and 500-meter spatial resolutions. Nonetheless, validation against the in situ eddy covariance measurement reveals significant errors in MODIS LE estimation. Our study integrates ground-measured, reanalysis and satellite data to predict LE by leveraging the advantage of the data-driven method. The study draws upon flux data derived from the AsiaFlux database, alongside reanalysis datasets from the Indian Monsoon Data Assimilation and Analysis (IMDAA) and the European Centre for Medium-Range Weather Forecasts (ERA5) products, as well as biophysical measurements from the MODIS satellite. An analysis of the annual water budget, based on ERA5 precipitation data, highlights net positive water balances across the study sites. By harnessing diverse datasets, we employ various machine learning regression algorithms. We find the support vector regression superior to linear, lasso, random forest, adaptive boosting and gradient boosting algorithms. This study highlights the robustness of support vector regression and accentuates the impact of climatic and environmental conditions on model performance, ultimately contributing to more precise predictions of latent heat flux.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
期刊最新文献
A comparative analysis of heat waves over two major urban agglomerations in China Incorporating zero-plane displacement in roughness length estimation and exposure correction factor calculation Spatial–temporal variation of daily precipitation in different levels over mainland China during 1960–2019 A novel early-warning standardized indicator for drought preparedness and management under multiple climate model projections Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1