Impact of Arctic and Antarctic Sudden Stratospheric Warmings on Thermospheric Composition

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2025-01-07 DOI:10.1029/2024JA032562
Jiarong Zhang, Jens Oberheide, Nicholas M. Pedatella, Guiping Liu
{"title":"Impact of Arctic and Antarctic Sudden Stratospheric Warmings on Thermospheric Composition","authors":"Jiarong Zhang,&nbsp;Jens Oberheide,&nbsp;Nicholas M. Pedatella,&nbsp;Guiping Liu","doi":"10.1029/2024JA032562","DOIUrl":null,"url":null,"abstract":"<p>Using the Global-scale Observations of the Limb and Disk (GOLD) and the Global Ultraviolet Imager (GUVI), we examine the impact of sudden stratospheric warmings (SSWs) on the changes of thermospheric composition during the 2018–2019 and 2020–2021 Arctic SSWs and the 2019 Antarctic SSW. Contributions of planetary waves, gravity waves, and migrating tides are assessed by performing numerical experiments with the NSF National Center for Atmospheric Research (NCAR) vertically extended version of the Whole Atmosphere Community Climate Model (WACCM-X). The variations in the column integrated O and N<sub>2</sub> density ratio (<span></span><math>\n <semantics>\n <mrow>\n <mo>∑</mo>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\sum O/{N}_{2}$</annotation>\n </semantics></math>) are generally similar among WACCM-X, GOLD, and GUVI observations though some differences exist. Following the onset of the Arctic SSWs, <span></span><math>\n <semantics>\n <mrow>\n <mo>∑</mo>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\sum O/{N}_{2}$</annotation>\n </semantics></math> is reduced by <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> $\\mathit{\\sim }$</annotation>\n </semantics></math>10% at low to mid latitudes. The variations during the 2019 Antarctic SSW are less pronounced, likely due to the event being a minor warming. WACCM-X simulations, with the Kp index and F10.7 cm solar flux kept at fixed low levels, confirm that the variability of <span></span><math>\n <semantics>\n <mrow>\n <mo>∑</mo>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\sum O/{N}_{2}$</annotation>\n </semantics></math> at low to mid latitudes is primarily induced by SSWs. The <span></span><math>\n <semantics>\n <mrow>\n <mo>∑</mo>\n <mi>O</mi>\n <mo>/</mo>\n <msub>\n <mi>N</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> $\\sum O/{N}_{2}$</annotation>\n </semantics></math> changes are associated with the reversals of the mean meridional circulation (MMC) in the lower thermosphere, mainly driven by westward-traveling planetary waves. The results highlight that planetary wave activity during SSWs can significantly impact the mean state of the thermosphere.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032562","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032562","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Using the Global-scale Observations of the Limb and Disk (GOLD) and the Global Ultraviolet Imager (GUVI), we examine the impact of sudden stratospheric warmings (SSWs) on the changes of thermospheric composition during the 2018–2019 and 2020–2021 Arctic SSWs and the 2019 Antarctic SSW. Contributions of planetary waves, gravity waves, and migrating tides are assessed by performing numerical experiments with the NSF National Center for Atmospheric Research (NCAR) vertically extended version of the Whole Atmosphere Community Climate Model (WACCM-X). The variations in the column integrated O and N2 density ratio ( O / N 2 $\sum O/{N}_{2}$ ) are generally similar among WACCM-X, GOLD, and GUVI observations though some differences exist. Following the onset of the Arctic SSWs, O / N 2 $\sum O/{N}_{2}$ is reduced by $\mathit{\sim }$ 10% at low to mid latitudes. The variations during the 2019 Antarctic SSW are less pronounced, likely due to the event being a minor warming. WACCM-X simulations, with the Kp index and F10.7 cm solar flux kept at fixed low levels, confirm that the variability of O / N 2 $\sum O/{N}_{2}$ at low to mid latitudes is primarily induced by SSWs. The O / N 2 $\sum O/{N}_{2}$ changes are associated with the reversals of the mean meridional circulation (MMC) in the lower thermosphere, mainly driven by westward-traveling planetary waves. The results highlight that planetary wave activity during SSWs can significantly impact the mean state of the thermosphere.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
The Spreading of Magnetic Reconnection X-Line in Particle-In-Cell Simulations– Mechanism and the Effect of Drift-Kink Instability A 3-D FDTD Methodology for Modeling the Propagation of VLF Whistler Mode PLHR Waves Through the Ionosphere “Polar” Substorms During Slow Solar Wind Characteristics of Wave-Particle Power Transfer as a Function of Electron Pitch Angle in Nonlinear Frequency Chirping Jupiter's Auroral Ionosphere: Juno Microwave Radiometer Observations of Energetic Electron Precipitation Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1