{"title":"Mechanisms of Autophagy in Ineffective Reperfusion After Ischemic Stroke","authors":"Shangying Bai, Yuchuan Ding, Leticia Simo, Fengwu Li, Xiaokun Geng","doi":"10.1002/jnr.70017","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Despite significant advancements in achieving high recanalization rates (80%–90%) for large vessel occlusions through mechanical thrombectomy, the issue of “futile recanalization” remains a major clinical challenge. Futile recanalization occurs when over half of patients fail to experience expected symptom improvement after vessel recanalization, often resulting in severe functional impairment or death. Traditionally, this phenomenon has been attributed to inadequate blood flow and reperfusion injury. More recently, ongoing neuronal death after reperfusion, which leads to the progression of the ischemic penumbra into the core infarct, has been termed “futile reperfusion.” This review explores the complex role of autophagy mechanisms in futile reperfusion following ischemic stroke, with a focus on its relationship to neuronal survival. We also examine the regulation of autophagic activity by epigenetic mechanisms. By investigating autophagy's role in ischemic stroke, we aim to identify novel pathways for precision treatment.</p>\n </div>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"103 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.70017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite significant advancements in achieving high recanalization rates (80%–90%) for large vessel occlusions through mechanical thrombectomy, the issue of “futile recanalization” remains a major clinical challenge. Futile recanalization occurs when over half of patients fail to experience expected symptom improvement after vessel recanalization, often resulting in severe functional impairment or death. Traditionally, this phenomenon has been attributed to inadequate blood flow and reperfusion injury. More recently, ongoing neuronal death after reperfusion, which leads to the progression of the ischemic penumbra into the core infarct, has been termed “futile reperfusion.” This review explores the complex role of autophagy mechanisms in futile reperfusion following ischemic stroke, with a focus on its relationship to neuronal survival. We also examine the regulation of autophagic activity by epigenetic mechanisms. By investigating autophagy's role in ischemic stroke, we aim to identify novel pathways for precision treatment.
期刊介绍:
The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology.
The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.