Unlocking Southern Ocean Under-Ice Seasonality With a New Monthly Climatology

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY Journal of Geophysical Research-Oceans Pub Date : 2025-01-07 DOI:10.1029/2024JC020920
Kaihe Yamazaki, Nathaniel L. Bindoff, Helen Elizabeth Phillips, Maxim Nikurashin, Laura Herraiz-Borreguero, Paul Spence
{"title":"Unlocking Southern Ocean Under-Ice Seasonality With a New Monthly Climatology","authors":"Kaihe Yamazaki,&nbsp;Nathaniel L. Bindoff,&nbsp;Helen Elizabeth Phillips,&nbsp;Maxim Nikurashin,&nbsp;Laura Herraiz-Borreguero,&nbsp;Paul Spence","doi":"10.1029/2024JC020920","DOIUrl":null,"url":null,"abstract":"<p>The advent of under-ice profiling float and biologging techniques has enabled year-round observation of the Southern Ocean and its Antarctic margin. These under-ice data are often overlooked in widely used oceanographic datasets, despite their importance in understanding seasonality and its role in sea ice changes, water mass formation, and glacial melt. We develop a monthly climatology of the Southern Ocean (south of 40°S and above 2,000 m) using Data Interpolating Variational Analysis, which excels in multi-dimensional interpolation and consistent handling of topography and horizontal advection. The climatology successfully captures thermohaline variability under sea ice, previously hard to obtain, and outperforms other observation-based products and state estimate simulations in data fidelity, with smaller root-mean-square errors and biases. To demonstrate its multi-purpose capability, we present a qualitative description of the seasonal variation, including (a) the surface mixed layer, (b) the water mass volume census, (c) the Antarctic Slope Front, and (d) shelf bottom waters. The circumpolar variation in the extent of dense shelf water—including its presence outside the four major formation sites—and the annual volume overturning that reaches deep waters are revealed for the first time. The present work offers a new monthly climatology of the Southern Ocean and the Antarctic margin, which will be instrumental in investigating the seasonality and improving ocean models, thereby making valuable winter observations more accessible. We further highlight the quantitative significance of under-ice data in reproducing ocean conditions, advocating for their increased use to achieve a better Southern Ocean observing system.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC020920","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC020920","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of under-ice profiling float and biologging techniques has enabled year-round observation of the Southern Ocean and its Antarctic margin. These under-ice data are often overlooked in widely used oceanographic datasets, despite their importance in understanding seasonality and its role in sea ice changes, water mass formation, and glacial melt. We develop a monthly climatology of the Southern Ocean (south of 40°S and above 2,000 m) using Data Interpolating Variational Analysis, which excels in multi-dimensional interpolation and consistent handling of topography and horizontal advection. The climatology successfully captures thermohaline variability under sea ice, previously hard to obtain, and outperforms other observation-based products and state estimate simulations in data fidelity, with smaller root-mean-square errors and biases. To demonstrate its multi-purpose capability, we present a qualitative description of the seasonal variation, including (a) the surface mixed layer, (b) the water mass volume census, (c) the Antarctic Slope Front, and (d) shelf bottom waters. The circumpolar variation in the extent of dense shelf water—including its presence outside the four major formation sites—and the annual volume overturning that reaches deep waters are revealed for the first time. The present work offers a new monthly climatology of the Southern Ocean and the Antarctic margin, which will be instrumental in investigating the seasonality and improving ocean models, thereby making valuable winter observations more accessible. We further highlight the quantitative significance of under-ice data in reproducing ocean conditions, advocating for their increased use to achieve a better Southern Ocean observing system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
期刊最新文献
Impact of Internal Tides on Distributions and Variability of Chlorophyll-a and Nutrients in the Indonesian Seas Effect of Pressure on the Diversity and Potential Activity of Aerobic Methanotrophs in Marine Sediments: A Case Study From the Shenhu Area, Northern South China Sea Characteristics and Mechanisms of Ocean Fronts-Induced Decomposition of Particulate Organic Matter and Its Implication for Marine Carbon Burial SWOT Cross-Track Error Characteristics Estimated From Observations Drivers of Tropical Cyclone—Induced Ocean Surface Cooling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1