Unveiling meteorological synergies in the coupling of an abnormal easterly wave and cutoff low in South Africa's February 2023 rainfall

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Meteorological Applications Pub Date : 2025-01-07 DOI:10.1002/met.70027
Farahnaz Fazel-Rastgar, Venkataraman Sivakumar, Masoud Rostami, Bijan Fallah
{"title":"Unveiling meteorological synergies in the coupling of an abnormal easterly wave and cutoff low in South Africa's February 2023 rainfall","authors":"Farahnaz Fazel-Rastgar,&nbsp;Venkataraman Sivakumar,&nbsp;Masoud Rostami,&nbsp;Bijan Fallah","doi":"10.1002/met.70027","DOIUrl":null,"url":null,"abstract":"<p>This study seeks to understand the meteorological mechanisms that caused widespread and heavy rainfall from 6 to 14 February 2023, over southern Mozambique and the eastern and northeastern areas in South Africa, including Limpopo Province, Mpumalanga Province and northern KwaZulu-Natal, by examining different outputs from reanalysis datasets. The heavy rainfall had a substantial hydrological impact, leading to significant flooding and disruptions. This research revealed that a slow-moving cutoff low (COL) system remained over the central parts of South Africa, triggering extensive and heavy rainfall mostly over the northeastern and eastern provinces. The outcomes from the reanalysis datasets display the influence of the weather system and the interaction between an initiated westerly wave, which converted into a near-stationary upper-air cold core upper air COL system, and the easterly wind wave associated with the South Indian Ocean Convergence Zone (SICZ), bringing significant warm humid air from the Indian Ocean into the study area. This study revealed an abnormal structural pattern in the wind vectors, low-pressure trough, upper and mid-tropospheric westerly flows and humidity compared with the long-term climate normal values over Mozambique and the northeastern and eastern regions of southern Africa. This event is exciting from a meteorological perspective due to its intensity and duration, the involvement of cyclonic activity and its implications for understanding the impacts of climate change on weather patterns in southern Africa. The heavy rainfall had a substantial hydrological impact, leading to significant flooding and disruptions, providing valuable data for improving forecasting models and disaster preparedness strategies and underscoring the importance of enhancing climate resilience in regions prone to extreme weather.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"32 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70027","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study seeks to understand the meteorological mechanisms that caused widespread and heavy rainfall from 6 to 14 February 2023, over southern Mozambique and the eastern and northeastern areas in South Africa, including Limpopo Province, Mpumalanga Province and northern KwaZulu-Natal, by examining different outputs from reanalysis datasets. The heavy rainfall had a substantial hydrological impact, leading to significant flooding and disruptions. This research revealed that a slow-moving cutoff low (COL) system remained over the central parts of South Africa, triggering extensive and heavy rainfall mostly over the northeastern and eastern provinces. The outcomes from the reanalysis datasets display the influence of the weather system and the interaction between an initiated westerly wave, which converted into a near-stationary upper-air cold core upper air COL system, and the easterly wind wave associated with the South Indian Ocean Convergence Zone (SICZ), bringing significant warm humid air from the Indian Ocean into the study area. This study revealed an abnormal structural pattern in the wind vectors, low-pressure trough, upper and mid-tropospheric westerly flows and humidity compared with the long-term climate normal values over Mozambique and the northeastern and eastern regions of southern Africa. This event is exciting from a meteorological perspective due to its intensity and duration, the involvement of cyclonic activity and its implications for understanding the impacts of climate change on weather patterns in southern Africa. The heavy rainfall had a substantial hydrological impact, leading to significant flooding and disruptions, providing valuable data for improving forecasting models and disaster preparedness strategies and underscoring the importance of enhancing climate resilience in regions prone to extreme weather.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Meteorological Applications
Meteorological Applications 地学-气象与大气科学
CiteScore
5.70
自引率
3.70%
发文量
62
审稿时长
>12 weeks
期刊介绍: The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including: applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits; forecasting, warning and service delivery techniques and methods; weather hazards, their analysis and prediction; performance, verification and value of numerical models and forecasting services; practical applications of ocean and climate models; education and training.
期刊最新文献
A comparative analysis of heat waves over two major urban agglomerations in China Incorporating zero-plane displacement in roughness length estimation and exposure correction factor calculation Spatial–temporal variation of daily precipitation in different levels over mainland China during 1960–2019 A novel early-warning standardized indicator for drought preparedness and management under multiple climate model projections Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1