Real-Time Encrypted Traffic Classification in Programmable Networks with P4 and Machine Learning

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Network Management Pub Date : 2025-01-08 DOI:10.1002/nem.2320
Aristide Tanyi-Jong Akem, Guillaume Fraysse, Marco Fiore
{"title":"Real-Time Encrypted Traffic Classification in Programmable Networks with P4 and Machine Learning","authors":"Aristide Tanyi-Jong Akem,&nbsp;Guillaume Fraysse,&nbsp;Marco Fiore","doi":"10.1002/nem.2320","DOIUrl":null,"url":null,"abstract":"<p>Network traffic encryption has been on the rise in recent years, making encrypted traffic classification (ETC) an important area of research. Machine learning (ML) methods for ETC are widely regarded as the state of the art. However, most existing solutions either rely on offline ETC based on collected network data or on online ETC with models running in the control plane of software-defined networks, all of which do not run at line rate and would not meet the strict requirements of ultra-low-latency applications in modern networks. This work exploits recent advances in data plane programmability to achieve real-time ETC in programmable switches at line rate, with high throughput and low latency. An extensive analysis is first conducted to show how tree-based models excel in ETC on various datasets. Then, a workflow is proposed for in-switch ETC with tree-based models. The proposed workflow builds on (i) an ETC-aware random forest (RF) modelling process where only features based on packet size and packet arrival times are used and (ii) an encoding of the trained RF model into off-the-shelf P4-programmable switches. The performance of the proposed in-switch ETC solution is evaluated on three use cases based on publicly available encrypted traffic datasets. Experiments are then conducted in a real-world testbed with Intel Tofino switches, in the presence of high-speed background traffic. Results show how the solution achieves high classification accuracy of up to 95<i>%</i> in QUIC traffic classification, with submicrosecond delay while consuming less than 10<i>%</i> on average of the total hardware resources available on the switch.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"35 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/nem.2320","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2320","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Network traffic encryption has been on the rise in recent years, making encrypted traffic classification (ETC) an important area of research. Machine learning (ML) methods for ETC are widely regarded as the state of the art. However, most existing solutions either rely on offline ETC based on collected network data or on online ETC with models running in the control plane of software-defined networks, all of which do not run at line rate and would not meet the strict requirements of ultra-low-latency applications in modern networks. This work exploits recent advances in data plane programmability to achieve real-time ETC in programmable switches at line rate, with high throughput and low latency. An extensive analysis is first conducted to show how tree-based models excel in ETC on various datasets. Then, a workflow is proposed for in-switch ETC with tree-based models. The proposed workflow builds on (i) an ETC-aware random forest (RF) modelling process where only features based on packet size and packet arrival times are used and (ii) an encoding of the trained RF model into off-the-shelf P4-programmable switches. The performance of the proposed in-switch ETC solution is evaluated on three use cases based on publicly available encrypted traffic datasets. Experiments are then conducted in a real-world testbed with Intel Tofino switches, in the presence of high-speed background traffic. Results show how the solution achieves high classification accuracy of up to 95% in QUIC traffic classification, with submicrosecond delay while consuming less than 10% on average of the total hardware resources available on the switch.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Network Management
International Journal of Network Management COMPUTER SCIENCE, INFORMATION SYSTEMS-TELECOMMUNICATIONS
CiteScore
5.10
自引率
6.70%
发文量
25
审稿时长
>12 weeks
期刊介绍: Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.
期刊最新文献
Brand Design Data Security and Privacy Protection Under 6G Network Slicing Architecture Design and Implementation of Intelligent Digital Media Interaction System Based on 6G Network Slicing Computationally Efficient Approach for 6G-AI-IoT Network Slicing and Error-Free Transmission Transport Assistants to Enhance TCP Connections: Investigating the Placement Problem Option Contracts in the DeFi Ecosystem: Opportunities, Solutions, and Technical Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1