A finite volume scheme employing the multipoint flux approximation with diamond stencil for the diffusive-viscous wave equation on general polyhedral meshes
{"title":"A finite volume scheme employing the multipoint flux approximation with diamond stencil for the diffusive-viscous wave equation on general polyhedral meshes","authors":"Di Yang, Zhiming Gao, Wenjing Yan","doi":"10.1002/fld.5336","DOIUrl":null,"url":null,"abstract":"<p>Based on three-dimensional seismic wave, simulations have become a pivotal aspect of seismic exploration. The diffusive-viscous wave equation, initially proposed by Goloshubin et al., is frequently utilized to describe seismic wave propagation in fluid-saturated media. However, obtaining numerical solutions for this equation has become an urgent issue in recent years. In this study, we present a cell-centered finite volume scheme utilizing a multipoint flux approximation that employs a “diamond stencil” on general polyhedral meshes to address the diffusive-viscous wave equation. Numerical tests exhibit that this new scheme attains optimal convergence, and its effectiveness is demonstrated through simulating vibrations induced by an earthquake source.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 2","pages":"151-163"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5336","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on three-dimensional seismic wave, simulations have become a pivotal aspect of seismic exploration. The diffusive-viscous wave equation, initially proposed by Goloshubin et al., is frequently utilized to describe seismic wave propagation in fluid-saturated media. However, obtaining numerical solutions for this equation has become an urgent issue in recent years. In this study, we present a cell-centered finite volume scheme utilizing a multipoint flux approximation that employs a “diamond stencil” on general polyhedral meshes to address the diffusive-viscous wave equation. Numerical tests exhibit that this new scheme attains optimal convergence, and its effectiveness is demonstrated through simulating vibrations induced by an earthquake source.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.