Artificial intelligence methods used in various aquaculture applications: A systematic literature review

IF 2.3 3区 农林科学 Q2 FISHERIES Journal of The World Aquaculture Society Pub Date : 2024-10-08 DOI:10.1111/jwas.13107
Thurein Aung, Rafiza Abdul Razak, Adibi Rahiman Bin Md Nor
{"title":"Artificial intelligence methods used in various aquaculture applications: A systematic literature review","authors":"Thurein Aung,&nbsp;Rafiza Abdul Razak,&nbsp;Adibi Rahiman Bin Md Nor","doi":"10.1111/jwas.13107","DOIUrl":null,"url":null,"abstract":"<p>This research article presents a systematic literature review on the current state-of-the-art artificial intelligence (AI) methodologies used in aquaculture applications. As the demand for seafood continues to grow, the aquaculture industry faces numerous challenges, including disease management, feeding optimization, water quality monitoring, and extraction of aquaculture area. To address these challenges effectively and sustainably, AI techniques have been increasingly applied in aquaculture systems over recent years. This review aims to analyze various AI methodologies utilized within different aspects of aquacultural practices. By examining existing studies and identifying trends and gaps in research areas related to AI integration into aquaculture practices, this paper provides valuable insights for further advancements. The purpose was to synthesize current knowledge on application and its challenges in implementing AI technologies within the commercial aquaculture industry. Specifically, the review is to identify and analyze peer-reviewed studies reporting on applications of AI technologies in aquaculture industry, to classify and summarize the key findings from the selected studies in aquaculture operations through AI, and to evaluate and discuss any challenges reported regarding the implementation and adoption of AI solutions in commercial aquaculture. The overall goal was to comprehensively assess these via a systematic literature review process. Challenges of AI technologies and methods were identified in the research literature for applying AI to optimize commercial aquaculture practices and production. An exhaustive search of a scholarly database from Scopus, was performed and papers published in English between 2020 and 2024 were considered for inclusion. After a rigorous screening process involving over 116 studies, 57 highly relevant works were identified and analyzed according to key themes involving demonstrated AI applications, employed methodologies and challenges that are expected when applying such methods. The findings revealed that AI-driven tools such as computer vision, machine learning, and predictive modeling hold much potential for enhancing sustainability, efficiency, and productivity within aquaculture operations through applications like disease monitoring, environmental management, and production optimization. However, the review also uncovered substantial challenges that will continue limiting widespread adoption, including restricted access to representative data, prohibitive expenses, technical complexities, lack of social acceptance, and data privacy and security concerns. This comprehensive synthesis of the current evidence available provides an empirical foundation upon which further progress can be built by identifying priority areas requiring additional research efforts to fully address challenges on the responsible integration of suitable solutions for the commercial aquaculture industry globally.</p>","PeriodicalId":17284,"journal":{"name":"Journal of The World Aquaculture Society","volume":"56 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jwas.13107","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The World Aquaculture Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jwas.13107","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

This research article presents a systematic literature review on the current state-of-the-art artificial intelligence (AI) methodologies used in aquaculture applications. As the demand for seafood continues to grow, the aquaculture industry faces numerous challenges, including disease management, feeding optimization, water quality monitoring, and extraction of aquaculture area. To address these challenges effectively and sustainably, AI techniques have been increasingly applied in aquaculture systems over recent years. This review aims to analyze various AI methodologies utilized within different aspects of aquacultural practices. By examining existing studies and identifying trends and gaps in research areas related to AI integration into aquaculture practices, this paper provides valuable insights for further advancements. The purpose was to synthesize current knowledge on application and its challenges in implementing AI technologies within the commercial aquaculture industry. Specifically, the review is to identify and analyze peer-reviewed studies reporting on applications of AI technologies in aquaculture industry, to classify and summarize the key findings from the selected studies in aquaculture operations through AI, and to evaluate and discuss any challenges reported regarding the implementation and adoption of AI solutions in commercial aquaculture. The overall goal was to comprehensively assess these via a systematic literature review process. Challenges of AI technologies and methods were identified in the research literature for applying AI to optimize commercial aquaculture practices and production. An exhaustive search of a scholarly database from Scopus, was performed and papers published in English between 2020 and 2024 were considered for inclusion. After a rigorous screening process involving over 116 studies, 57 highly relevant works were identified and analyzed according to key themes involving demonstrated AI applications, employed methodologies and challenges that are expected when applying such methods. The findings revealed that AI-driven tools such as computer vision, machine learning, and predictive modeling hold much potential for enhancing sustainability, efficiency, and productivity within aquaculture operations through applications like disease monitoring, environmental management, and production optimization. However, the review also uncovered substantial challenges that will continue limiting widespread adoption, including restricted access to representative data, prohibitive expenses, technical complexities, lack of social acceptance, and data privacy and security concerns. This comprehensive synthesis of the current evidence available provides an empirical foundation upon which further progress can be built by identifying priority areas requiring additional research efforts to fully address challenges on the responsible integration of suitable solutions for the commercial aquaculture industry globally.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
7.10%
发文量
69
审稿时长
2 months
期刊介绍: The Journal of the World Aquaculture Society is an international scientific journal publishing original research on the culture of aquatic plants and animals including: Nutrition; Disease; Genetics and breeding; Physiology; Environmental quality; Culture systems engineering; Husbandry practices; Economics and marketing.
期刊最新文献
Effect of hop acid inclusion as a feed additive on Nile tilapia, Oreochromis niloticus, production, lysozyme activity, fillet color, and aroma The National Regulatory Cost Burden on US aquaculture farms Tree-line system: A sea bottom cultivation technology to improve the biomass production of edible seaweed Chondracanthus chamissoi (Gigartinales, Rhodophyta) Mytilus galloprovincialis's role in Integrated Multi-Trophic Aquaculture (IMTA): A comprehensive review Metabolic growth differences between Gymnocypris przewalskii and Gymnocypris eckloni: A quantitative proteomic perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1