Elevating mechanical and thermal performance on alkali-treated pineapple/glass fibre sandwich composite

IF 2.9 4区 化学 Q2 POLYMER SCIENCE Polymer International Pub Date : 2024-10-08 DOI:10.1002/pi.6705
Sajin Justin Abraham Baby, Sujin Jose Arul, Raja Thandavamoorthy, Yuvarajan Devarajan
{"title":"Elevating mechanical and thermal performance on alkali-treated pineapple/glass fibre sandwich composite","authors":"Sajin Justin Abraham Baby,&nbsp;Sujin Jose Arul,&nbsp;Raja Thandavamoorthy,&nbsp;Yuvarajan Devarajan","doi":"10.1002/pi.6705","DOIUrl":null,"url":null,"abstract":"<p>The present work generated hybrid composite sandwiches by incorporating 65% epoxy resin and 35% reinforcements derived from pineapple and glass fibres. The specimens were subjected to mechanical characterization by tensile, flexural and impact examinations. Among the untreated samples, the specimens containing untreated pineapple fibres (PF) with a composition of 17% PF, 18% glass fibres (three layers) and 65% epoxy by weight (17PF/TLGF) showed the most superior mechanical characteristics. Nevertheless, specimens containing fibres treated with NaOH exhibited exceptional characteristics, attaining a tensile strength of 88.121 MPa, a flexural strength of 94.213 MPa and an impact energy of 4.1 J. These data indicate a 20% enhancement in both tensile and flexural strength as well as a 63% improvement in impact strength compared to specimens containing 35% PF and lacking glass fibres (35PF/0GF). In comparison to 17PF/TLGF, the specimens treated with NaOH exhibited a 4.34% gain in tensile strength, a 4.24% increase in flexural strength and a 9% increase in impact strength. Experimental TGA was performed on the chemically treated fibre composite specimens, specifically identified as 35PF/0GF and 17PF/TLGF. Approximately 260 °C marked the beginning of decomposition for the 35PF/0GF sample, but the 17PF/TLGF sample decomposed at roughly 310°C. In addition, the fragmented surface of the 17PF/TLGF sample was analysed using SEM. © 2024 Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"74 2","pages":"170-177"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6705","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The present work generated hybrid composite sandwiches by incorporating 65% epoxy resin and 35% reinforcements derived from pineapple and glass fibres. The specimens were subjected to mechanical characterization by tensile, flexural and impact examinations. Among the untreated samples, the specimens containing untreated pineapple fibres (PF) with a composition of 17% PF, 18% glass fibres (three layers) and 65% epoxy by weight (17PF/TLGF) showed the most superior mechanical characteristics. Nevertheless, specimens containing fibres treated with NaOH exhibited exceptional characteristics, attaining a tensile strength of 88.121 MPa, a flexural strength of 94.213 MPa and an impact energy of 4.1 J. These data indicate a 20% enhancement in both tensile and flexural strength as well as a 63% improvement in impact strength compared to specimens containing 35% PF and lacking glass fibres (35PF/0GF). In comparison to 17PF/TLGF, the specimens treated with NaOH exhibited a 4.34% gain in tensile strength, a 4.24% increase in flexural strength and a 9% increase in impact strength. Experimental TGA was performed on the chemically treated fibre composite specimens, specifically identified as 35PF/0GF and 17PF/TLGF. Approximately 260 °C marked the beginning of decomposition for the 35PF/0GF sample, but the 17PF/TLGF sample decomposed at roughly 310°C. In addition, the fragmented surface of the 17PF/TLGF sample was analysed using SEM. © 2024 Society of Chemical Industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
期刊最新文献
Issue Information Fabrication of polylactide composites with silver nanoparticles by sputtering deposition and their antimicrobial and antiviral applications Anti-tumoural activity of 3D printed fluorohydroxyapatite–polylactic acid scaffolds combined with graphene oxide and doxorubicin Issue Information Cover Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1