Unraveling the underlying mechanisms of cancer stem cells in therapeutic resistance for optimizing treatment strategies

Yunhan Tan, Siyuan Qin, Zhe Zhang, Yongen Liu, Li Zhou, Bowen Li, Edouard C. Nice, Yuanyuan Zhang, Jing Jing
{"title":"Unraveling the underlying mechanisms of cancer stem cells in therapeutic resistance for optimizing treatment strategies","authors":"Yunhan Tan,&nbsp;Siyuan Qin,&nbsp;Zhe Zhang,&nbsp;Yongen Liu,&nbsp;Li Zhou,&nbsp;Bowen Li,&nbsp;Edouard C. Nice,&nbsp;Yuanyuan Zhang,&nbsp;Jing Jing","doi":"10.1002/mog2.70009","DOIUrl":null,"url":null,"abstract":"<p>The success of cancer therapy has been significantly hampered by various mechanisms of therapeutic resistance. Chief among these mechanisms is the presence of clonal heterogeneity within an individual tumor mass. The introduction of the concept of cancer stem cells (CSCs)—a rare and immature subpopulation with tumorigenic potential that contributes to intratumoral heterogeneity—has deepened our understanding of drug resistance. Given the characteristics of CSCs, such as increased drug-efflux activity, enhanced DNA-repair capacity, high metabolic plasticity, adaptability to oxidative stress, and/or upregulated detoxifying aldehyde dehydrogenase (ALDH) enzymes, CSCs have been recognized as a theoretical reservoir for resistant diseases. Implicit in this recognition is the possibility that CSC-targeted therapeutic strategies might offer a breakthrough in overcoming drug resistance in cancer patients. Herein, we summarize the generation of CSCs and our current understanding of the mechanisms underlying CSC-mediated therapeutic resistance. This extended knowledge has progressively been translated into novel anticancer therapeutic strategies and significantly enriched the available options for combination treatments, all of which are anticipated to improve clinical outcomes for patients experiencing CSC-related relapse.</p>","PeriodicalId":100902,"journal":{"name":"MedComm – Oncology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mog2.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm – Oncology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mog2.70009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The success of cancer therapy has been significantly hampered by various mechanisms of therapeutic resistance. Chief among these mechanisms is the presence of clonal heterogeneity within an individual tumor mass. The introduction of the concept of cancer stem cells (CSCs)—a rare and immature subpopulation with tumorigenic potential that contributes to intratumoral heterogeneity—has deepened our understanding of drug resistance. Given the characteristics of CSCs, such as increased drug-efflux activity, enhanced DNA-repair capacity, high metabolic plasticity, adaptability to oxidative stress, and/or upregulated detoxifying aldehyde dehydrogenase (ALDH) enzymes, CSCs have been recognized as a theoretical reservoir for resistant diseases. Implicit in this recognition is the possibility that CSC-targeted therapeutic strategies might offer a breakthrough in overcoming drug resistance in cancer patients. Herein, we summarize the generation of CSCs and our current understanding of the mechanisms underlying CSC-mediated therapeutic resistance. This extended knowledge has progressively been translated into novel anticancer therapeutic strategies and significantly enriched the available options for combination treatments, all of which are anticipated to improve clinical outcomes for patients experiencing CSC-related relapse.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macrophage-Mediated Myelin Recycling Promotes Malignant Development of Glioblastoma Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention Lomitapide: Targeting METTL3 to Overcome Osimertinib Resistance in NSCLC Through Autophagy Activation Ephrin A1 ligand-based CAR-T cells for immunotherapy of EphA2-positive cancer Analysis of reoperational reason of patients with thyroid cancer and strategies for its diagnosis and treatment: A 6-year single-center retrospective study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1