{"title":"Distributed \n \n \n H\n ∞\n \n $H_\\infty$\n control for roller kiln temperature based on adaptive dynamic programming","authors":"Zeng Luo, Ning Chen, Jiayao Chen, Biao Luo, Binyan Li, Weihua Gui","doi":"10.1049/cth2.12785","DOIUrl":null,"url":null,"abstract":"<p>The roller kiln with multi-temperature zones used for cathode material sintering is an interconnected system with time delay in energy transfer and precise control of the temperature for the preparation of cathode materials for lithium-ion batteries. However, the interconnection between the temperature zones, the time delay of the temperature state, and the disturbance of the external environment make it difficult to control the sintering process. For this reason, this paper develops a distributed <span></span><math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$H_{\\infty }$</annotation>\n </semantics></math> control of the temperature of roller kiln based on adaptive dynamic programming (ADP). Firstly, the heat transfer mechanism of sintering process is discussed; the law of energy conservation provides the physical basis for the sintering process on which the autocorrelation function method identifies the time delay. Then, the cost function is constructed by combining the Lyapunov–Krasovskii function containing the time delay, the temperature state, the heating power of the silicon carbon rod and the perturbation. Subsequently, Hamilton–Jacobi–Isaac equation with the optimal cost function and the optimal distributed control strategy are approximated by neural network of ADP. Finally, the stability of the closed-loop system is proved by Lyapunov functional analysis, and the effectiveness of the proposed method is verified by the simulation results of roller kiln temperature control.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12785","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12785","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The roller kiln with multi-temperature zones used for cathode material sintering is an interconnected system with time delay in energy transfer and precise control of the temperature for the preparation of cathode materials for lithium-ion batteries. However, the interconnection between the temperature zones, the time delay of the temperature state, and the disturbance of the external environment make it difficult to control the sintering process. For this reason, this paper develops a distributed control of the temperature of roller kiln based on adaptive dynamic programming (ADP). Firstly, the heat transfer mechanism of sintering process is discussed; the law of energy conservation provides the physical basis for the sintering process on which the autocorrelation function method identifies the time delay. Then, the cost function is constructed by combining the Lyapunov–Krasovskii function containing the time delay, the temperature state, the heating power of the silicon carbon rod and the perturbation. Subsequently, Hamilton–Jacobi–Isaac equation with the optimal cost function and the optimal distributed control strategy are approximated by neural network of ADP. Finally, the stability of the closed-loop system is proved by Lyapunov functional analysis, and the effectiveness of the proposed method is verified by the simulation results of roller kiln temperature control.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.