{"title":"Enhanced adsorption of Cr(VI) from wastewater by utilizing sludge and reed to prepare ceramsite modified with Fe3O4","authors":"Xin Gao, Shouwei Jian, Baodong Li, Jianxiang Huang, Fei Dai, Bo Peng, Xinxin He, Jiaxuan Chen","doi":"10.1111/jace.20291","DOIUrl":null,"url":null,"abstract":"<p>A large amount of wastewater containing Cr(VI) is highly toxic and harmful to the environment, which requires effective treatment. In this study, an adsorbed ceramsite was prepared from dredged sludge (DS) and reed powder (RP). Then the prepared ceramsite was introduced Fe<sub>3</sub>O<sub>4</sub> magnetic functional groups by a simple hydrothermal method to enhance the adsorption of Cr(VI) from wastewater. Batch adsorption experiments of Fe<sub>3</sub>O<sub>4</sub>-modified ceramsite (FCS) to remove Cr(VI) were studied systematically. Effects of different contact time, adsorbent mass and initial Cr(VI) concentration on Cr(VI) removal efficiency were investigated and optimized by a response surface methodology. The results show that when the loading content of Fe<sub>3</sub>O<sub>4</sub> is 30% (FCS-0.3), the highest removal efficiency of Cr(VI) reached 88.48%, and the Cr(VI) adsorbed process can be well described by pseudo-second-order kinetics and Langmuir model, indicating that adsorption process is a chemisorption and monolayer adsorption. Moreover, the FTIR, XPS and Zeta potential analysis further revealed the mechanism of efficient removal of Cr(VI) by Fe<sub>3</sub>O<sub>4</sub> loaded onto the ceramsite to increase the specific surface area and functional groups to adsorb Cr(VI). This study provides an effective method to convert solid waste such as DS and RP into a highly efficient magnetic adsorbent to adsorb and remove Cr(VI) from wastewater.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20291","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
A large amount of wastewater containing Cr(VI) is highly toxic and harmful to the environment, which requires effective treatment. In this study, an adsorbed ceramsite was prepared from dredged sludge (DS) and reed powder (RP). Then the prepared ceramsite was introduced Fe3O4 magnetic functional groups by a simple hydrothermal method to enhance the adsorption of Cr(VI) from wastewater. Batch adsorption experiments of Fe3O4-modified ceramsite (FCS) to remove Cr(VI) were studied systematically. Effects of different contact time, adsorbent mass and initial Cr(VI) concentration on Cr(VI) removal efficiency were investigated and optimized by a response surface methodology. The results show that when the loading content of Fe3O4 is 30% (FCS-0.3), the highest removal efficiency of Cr(VI) reached 88.48%, and the Cr(VI) adsorbed process can be well described by pseudo-second-order kinetics and Langmuir model, indicating that adsorption process is a chemisorption and monolayer adsorption. Moreover, the FTIR, XPS and Zeta potential analysis further revealed the mechanism of efficient removal of Cr(VI) by Fe3O4 loaded onto the ceramsite to increase the specific surface area and functional groups to adsorb Cr(VI). This study provides an effective method to convert solid waste such as DS and RP into a highly efficient magnetic adsorbent to adsorb and remove Cr(VI) from wastewater.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.