Tailoring Bimetallic Pt/Pd Cryogels for Efficient Ethanol Electro-Oxidation

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY ChemElectroChem Pub Date : 2024-12-11 DOI:10.1002/celc.202400552
Hadir Borg, Dániel Zámbó, Patrick Bessel, Daniel Kranz, Marina Rosebrock, Franziska Lübkemann-Warwas, Nadja C. Bigall, Dirk Dorfs
{"title":"Tailoring Bimetallic Pt/Pd Cryogels for Efficient Ethanol Electro-Oxidation","authors":"Hadir Borg,&nbsp;Dániel Zámbó,&nbsp;Patrick Bessel,&nbsp;Daniel Kranz,&nbsp;Marina Rosebrock,&nbsp;Franziska Lübkemann-Warwas,&nbsp;Nadja C. Bigall,&nbsp;Dirk Dorfs","doi":"10.1002/celc.202400552","DOIUrl":null,"url":null,"abstract":"<p>Cryogels made of colloidal nanoparticles (NPs) are a unique material class with a high specific surface area and tunable microstructure. Flash freezing of the nanoparticle building blocks and subsequent freeze-drying of the gels, the so-called cryoaerogelation, allows significant control over morphology, stability and improved electrocatalytic performance. In the present work, the first bimetallic Pt/Pd cryogel films of mixed Pt and Pd NPs are prepared in different molar ratios. High-resolution microscopic and spectroscopic characterization techniques are applied to confirm the final Pt : Pd ratio besides the distribution of nanoparticles throughout the cryogel structure. Scanning electron microscopy (SEM) images of the different prepared cryogel films show a cellular to dendritic superstructure regardless of the Pt and/or Pd composition in a highly reproducible manner. Elemental analysis shows homogenous distribution of Pt and Pd NPs at the microscale for all samples. Since the prepared materials are of utmost importance for catalytic applications, their electrocatalytic activity toward ethanol oxidation reaction (EOR) is investigated. Fine-tuning the concentration of the building blocks, the structure, thickness, and composition of the porous coatings enables high electrocatalytic activity to be achieved. Cryogel thin films with an atomic ratio of 1 : 4 Pt : Pd have the highest electrocatalytic activity for EOR.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400552","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202400552","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogels made of colloidal nanoparticles (NPs) are a unique material class with a high specific surface area and tunable microstructure. Flash freezing of the nanoparticle building blocks and subsequent freeze-drying of the gels, the so-called cryoaerogelation, allows significant control over morphology, stability and improved electrocatalytic performance. In the present work, the first bimetallic Pt/Pd cryogel films of mixed Pt and Pd NPs are prepared in different molar ratios. High-resolution microscopic and spectroscopic characterization techniques are applied to confirm the final Pt : Pd ratio besides the distribution of nanoparticles throughout the cryogel structure. Scanning electron microscopy (SEM) images of the different prepared cryogel films show a cellular to dendritic superstructure regardless of the Pt and/or Pd composition in a highly reproducible manner. Elemental analysis shows homogenous distribution of Pt and Pd NPs at the microscale for all samples. Since the prepared materials are of utmost importance for catalytic applications, their electrocatalytic activity toward ethanol oxidation reaction (EOR) is investigated. Fine-tuning the concentration of the building blocks, the structure, thickness, and composition of the porous coatings enables high electrocatalytic activity to be achieved. Cryogel thin films with an atomic ratio of 1 : 4 Pt : Pd have the highest electrocatalytic activity for EOR.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定制用于高效乙醇电氧化的双金属Pt/Pd低温冰箱
由胶体纳米颗粒(NPs)制成的低温冰箱是一类独特的材料,具有高比表面积和可调的微观结构。对纳米颗粒构建块进行速冻,然后对凝胶进行冷冻干燥,即所谓的冷冻凝胶,可以显著控制其形态、稳定性和提高电催化性能。本文首次制备了不同摩尔比的Pt和Pd混合NPs双金属Pt/Pd低温凝胶膜。高分辨率显微和光谱表征技术用于确定最终的Pt: Pd比,以及纳米颗粒在整个低温凝胶结构中的分布。不同制备的低温凝胶膜的扫描电子显微镜(SEM)图像显示,无论Pt和/或Pd成分如何,都以高度可复制的方式显示了细胞到树枝状的上层结构。元素分析表明,所有样品的铂和钯纳米粒子在微观尺度上分布均匀。由于制备的材料对催化应用具有重要意义,因此研究了其对乙醇氧化反应的电催化活性。通过微调构建块的浓度、结构、厚度和多孔涂层的组成,可以实现高电催化活性。Pt: Pd原子比为1:4的低温凝胶薄膜具有最高的电催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
期刊最新文献
Front Cover: Dynamics of the Galvanic Replacement Reaction of Silver by Gold: Phenomenological Models for Open Circuit Potential-Time Responsive Indicator (ChemElectroChem 22/2025) Hydrothermally Carbonized Corncob-Derived Hard Carbon Anodes for High-Performance Sodium-Ion Batteries Engineering Alloying and Conversion Interlayers for Anode-Less Solid-State Batteries Parametric Investigation of Electrochemical Synthesis of Ammonium Persulfate in Flow Reactor Bayesian Optimization of Electrode Conditioning of Ni(-Fe) Electrodes for the Alkaline Oxygen Evolution Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1