Fixed-Time State Observer-Based Robust Adaptive Neural Fault-Tolerant Control for a Quadrotor Unmanned Aerial Vehicle

IF 3.9 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Adaptive Control and Signal Processing Pub Date : 2024-10-15 DOI:10.1002/acs.3925
Sanjeev Ranjan, Somanath Majhi
{"title":"Fixed-Time State Observer-Based Robust Adaptive Neural Fault-Tolerant Control for a Quadrotor Unmanned Aerial Vehicle","authors":"Sanjeev Ranjan,&nbsp;Somanath Majhi","doi":"10.1002/acs.3925","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents a fixed-time state observer-based robust adaptive neural fault-tolerant control (RANFTC) for attitude and altitude tracking and control of quadrotor unmanned aerial vehicles (UAVs), considering multiple actuator faults, parametric uncertainty, and unknown external disturbances simultaneously. A novel fixed-time state error estimation based on sliding mode observer is designed, which is independent of initial conditions. A proportional–integral–derivative (PID) based sliding mode control (SMC) is proposed to handle actuator faults and unknown disturbances in combination with the fixed-time observer within the fault-tolerant control (FTC) design scheme. The radial basis function neural network (RBFNN) is employed with the controller to approximate the uncertain parameters of the system. Furthermore, two new adaptive laws are designed to estimate the sudden actuator fault and the unknown upper bound of disturbances independently. Implementing these estimation schemes avoids overestimation, enhances the robustness of the presented controller, and substantially eliminates the control chattering problem. By applying the Lyapunov stability concept, the suggested control strategy guarantees that the states of the quadrotor UAV converge to the origin in a finite time. Finally, simulation studies are conducted to demonstrate the tracking performance and highlight the effectiveness of the proposed FTC design compared to the existing FTC methods.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 1","pages":"132-151"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3925","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a fixed-time state observer-based robust adaptive neural fault-tolerant control (RANFTC) for attitude and altitude tracking and control of quadrotor unmanned aerial vehicles (UAVs), considering multiple actuator faults, parametric uncertainty, and unknown external disturbances simultaneously. A novel fixed-time state error estimation based on sliding mode observer is designed, which is independent of initial conditions. A proportional–integral–derivative (PID) based sliding mode control (SMC) is proposed to handle actuator faults and unknown disturbances in combination with the fixed-time observer within the fault-tolerant control (FTC) design scheme. The radial basis function neural network (RBFNN) is employed with the controller to approximate the uncertain parameters of the system. Furthermore, two new adaptive laws are designed to estimate the sudden actuator fault and the unknown upper bound of disturbances independently. Implementing these estimation schemes avoids overestimation, enhances the robustness of the presented controller, and substantially eliminates the control chattering problem. By applying the Lyapunov stability concept, the suggested control strategy guarantees that the states of the quadrotor UAV converge to the origin in a finite time. Finally, simulation studies are conducted to demonstrate the tracking performance and highlight the effectiveness of the proposed FTC design compared to the existing FTC methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
16.10%
发文量
163
审稿时长
5 months
期刊介绍: The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material. Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include: Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers Nonlinear, Robust and Intelligent Adaptive Controllers Linear and Nonlinear Multivariable System Identification and Estimation Identification of Linear Parameter Varying, Distributed and Hybrid Systems Multiple Model Adaptive Control Adaptive Signal processing Theory and Algorithms Adaptation in Multi-Agent Systems Condition Monitoring Systems Fault Detection and Isolation Methods Fault Detection and Isolation Methods Fault-Tolerant Control (system supervision and diagnosis) Learning Systems and Adaptive Modelling Real Time Algorithms for Adaptive Signal Processing and Control Adaptive Signal Processing and Control Applications Adaptive Cloud Architectures and Networking Adaptive Mechanisms for Internet of Things Adaptive Sliding Mode Control.
期刊最新文献
Issue Information Issue Information Scalable δ $$ \delta $$ -Level Coherent State Synchronization of Multi-Agent Systems with Adaptive Protocols and Bounded Disturbances Predefined-Time Synchronization of Coupled Competitive Neural Networks Asynchronous Resilient Filtering for Singular Perturbation Stochastic Semi-Markov CPSs Against Stochastic Cyber Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1