Effects of soil compost load on water-extractable organic matter content and its UV- and fluorescence-based compositional characteristics

Nativ Rotbart, Adi Oren, Yotam Guetta, Shlomit Medina, Yael Laor, Michael Raviv, Uri Yermiyahu, Mikhail Borisover, Oshri Rinot, Elan Braude, Asher Bar-Tal
{"title":"Effects of soil compost load on water-extractable organic matter content and its UV- and fluorescence-based compositional characteristics","authors":"Nativ Rotbart,&nbsp;Adi Oren,&nbsp;Yotam Guetta,&nbsp;Shlomit Medina,&nbsp;Yael Laor,&nbsp;Michael Raviv,&nbsp;Uri Yermiyahu,&nbsp;Mikhail Borisover,&nbsp;Oshri Rinot,&nbsp;Elan Braude,&nbsp;Asher Bar-Tal","doi":"10.1002/saj2.70014","DOIUrl":null,"url":null,"abstract":"<p>The application of compost increases soil organic matter (SOM) content; however, there is a lack of information on the short- and long-term effects of compost application on the dynamics of labile SOM pools in compost-amended soils in semiarid region. The goal of this study is to distinguish between parameters that can be used for investigating the accumulative effects of compost application and parameters that are sensitive for short-term changes but diminish with time. To address this goal, we focused on (1) the effects of compost application rates on short-term dynamics of soil contents of microbial biomass carbon (MBC), cold water-extractable organic carbon (WEOC), and hot water-extractable organic carbon (HWEOC), respectively, and (2) composition of WEOC and HWEOC characterized using (i) absorbance at 254 nm (Abs<sub>254</sub>) representing the presence of aromatic components and (ii) fluorescence spectroscopy of excitation–emission matrices coupled with parallel factor analysis. Soil samples were taken from a long-term field experiment in semiarid region, which investigated the effects of the annual load of a cattle manure-based compost (at rates of 0, 20, 40, or 60 m<sup>3</sup> ha<sup>−1</sup> year<sup>−1</sup>) on soil properties and crop performance. C concentrations in soil water extracts were found to be sensitive indicators of compost-load effect on soil organic carbon content. Compost dose had a strong short-term (2 weeks) impact on MBC, but no long-term (over months and years) effect was observed. Of the variables examined in the short term, the MBC, WEOC, and Abs<sub>254</sub> values of the extracts were found to be the most responsive to compost load. The proportion of the fluorescent constituents out of the WEOC and HWEOC decreased with compost dose. UV- and fluorescence-spectroscopy were found to be useful means to characterize the influence of compost load on the composition of water-extractable organic matter and hot water-extractable organic matter in semiarid region.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/saj2.70014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of compost increases soil organic matter (SOM) content; however, there is a lack of information on the short- and long-term effects of compost application on the dynamics of labile SOM pools in compost-amended soils in semiarid region. The goal of this study is to distinguish between parameters that can be used for investigating the accumulative effects of compost application and parameters that are sensitive for short-term changes but diminish with time. To address this goal, we focused on (1) the effects of compost application rates on short-term dynamics of soil contents of microbial biomass carbon (MBC), cold water-extractable organic carbon (WEOC), and hot water-extractable organic carbon (HWEOC), respectively, and (2) composition of WEOC and HWEOC characterized using (i) absorbance at 254 nm (Abs254) representing the presence of aromatic components and (ii) fluorescence spectroscopy of excitation–emission matrices coupled with parallel factor analysis. Soil samples were taken from a long-term field experiment in semiarid region, which investigated the effects of the annual load of a cattle manure-based compost (at rates of 0, 20, 40, or 60 m3 ha−1 year−1) on soil properties and crop performance. C concentrations in soil water extracts were found to be sensitive indicators of compost-load effect on soil organic carbon content. Compost dose had a strong short-term (2 weeks) impact on MBC, but no long-term (over months and years) effect was observed. Of the variables examined in the short term, the MBC, WEOC, and Abs254 values of the extracts were found to be the most responsive to compost load. The proportion of the fluorescent constituents out of the WEOC and HWEOC decreased with compost dose. UV- and fluorescence-spectroscopy were found to be useful means to characterize the influence of compost load on the composition of water-extractable organic matter and hot water-extractable organic matter in semiarid region.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new hydraulic barrier with the gradient distribution of fixed net negative charges An empirical equation for sediment transport capacity of overland flow: Integrating slope, discharge, and particle size A short history of astropedology Microscale imaging of phosphate mobility under unsaturated flow as affected by a fertilizer enhancing polymer Mineralization potential of spent coffee grounds and other nutrient sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1