Research Advances in Interface Engineering of Solid-State Lithium Batteries

Jianfang Yang, Xianyong Zhang, Minchen Hou, Chang Ni, Chao Chen, Siliu Liu, Yan Wang, Xueyi Lu, Xia Lu
{"title":"Research Advances in Interface Engineering of Solid-State Lithium Batteries","authors":"Jianfang Yang,&nbsp;Xianyong Zhang,&nbsp;Minchen Hou,&nbsp;Chang Ni,&nbsp;Chao Chen,&nbsp;Siliu Liu,&nbsp;Yan Wang,&nbsp;Xueyi Lu,&nbsp;Xia Lu","doi":"10.1002/cnl2.188","DOIUrl":null,"url":null,"abstract":"<p>Solid-state lithium batteries have attracted increasing attention due to their high ionic conductivity, potential high safety performance, and high energy density. However, their practical application is limited by a series of interface issues. In recent years, many efforts have been dedicated to solving these problems via interface engineering by providing feasible strategies for the optimization of lithiumion solid-state battery interfaces. This paper reviews the recent developments of interface engineering in addressing interfacial issues. The existing interface problems are first systematically summarized, including poor contact, electrochemical instability, lithium dendrites, space-charge layers, and element diffusion. Then, the corresponding interface characteristics and engineering strategies are thoroughly analyzed from the perspective of the cathode/electrolyte interface, the anode/electrolyte interface, and battery structure design. Finally, future research directions for the interface modification of solid-state lithium batteries are discussed.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.188","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state lithium batteries have attracted increasing attention due to their high ionic conductivity, potential high safety performance, and high energy density. However, their practical application is limited by a series of interface issues. In recent years, many efforts have been dedicated to solving these problems via interface engineering by providing feasible strategies for the optimization of lithiumion solid-state battery interfaces. This paper reviews the recent developments of interface engineering in addressing interfacial issues. The existing interface problems are first systematically summarized, including poor contact, electrochemical instability, lithium dendrites, space-charge layers, and element diffusion. Then, the corresponding interface characteristics and engineering strategies are thoroughly analyzed from the perspective of the cathode/electrolyte interface, the anode/electrolyte interface, and battery structure design. Finally, future research directions for the interface modification of solid-state lithium batteries are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Progress in Halogen-Doped Single-Atom Catalysts for Electrochemical Reactions Progress and Future Challenges in Designing High-Performance Ni/CeO2 Catalysts for CO2 Methanation: A Critical Review Research Advances on Lithium-Ion Batteries Calendar Life Prognostic Models Research Advances in Interface Engineering of Solid-State Lithium Batteries High Temperature Shock (HTS) Synthesis of Carbon-Based Nanomaterials for Electrochemical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1