{"title":"Rapid single flax (Linum usitatissimum) seed phenotyping of oil and other quality traits using single kernel near infrared spectroscopy","authors":"Paul R. Armstrong, Gokhan Hacisalihoglu","doi":"10.1002/aocs.12875","DOIUrl":null,"url":null,"abstract":"<p>The growing interest in the rapid measurement of seed ingredients using single-kernel NIR (SKNIR) spectroscopy as a nondestructive measurement technique allows fast analysis of sample seed variance that can have effects on breeding and end-use processing. Flax (<i>Linum usitatissimum</i>), an oilseed crop grown in the Northwest United States and worldwide, is highly beneficial for human health, food, and fiber. Its health benefits include its high protein and omega-3 fatty acids content. Therefore, seed composition profiles are an important aspect of breeding. The goals of this research were the development of single seed NIR calibration models for protein, oil, and weight of intact flax seeds. In this study, SKNIR spectroscopy was used on a diverse set of flax accessions comprising of 306 samples to create prediction models on a custom built SKNIR instrument. Spectra data and reference protein, oil, and weight were used to build partial least squares (PLS) models. Calibration models provided reasonable prediction of these traits and could be used for screening purposes. PLS statistics were oil (<i>R</i><sup>2</sup> = 0.82, SEP = 1.72), weight (<i>R</i><sup>2</sup> = 0.74, SEP = 0.71), and protein (<i>R</i><sup>2</sup> = 0.62, SEP = 0.96) for validation data sets comprising of one-third of the total samples. In conclusion, prediction models showed that SKNIR spectroscopy could be a very beneficial nondestructive technique to determine oil and weight as well as rapid screening of protein in single flax seeds while not requiring extensive preparation as compared to traditional techniques.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 1","pages":"115-123"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12875","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The growing interest in the rapid measurement of seed ingredients using single-kernel NIR (SKNIR) spectroscopy as a nondestructive measurement technique allows fast analysis of sample seed variance that can have effects on breeding and end-use processing. Flax (Linum usitatissimum), an oilseed crop grown in the Northwest United States and worldwide, is highly beneficial for human health, food, and fiber. Its health benefits include its high protein and omega-3 fatty acids content. Therefore, seed composition profiles are an important aspect of breeding. The goals of this research were the development of single seed NIR calibration models for protein, oil, and weight of intact flax seeds. In this study, SKNIR spectroscopy was used on a diverse set of flax accessions comprising of 306 samples to create prediction models on a custom built SKNIR instrument. Spectra data and reference protein, oil, and weight were used to build partial least squares (PLS) models. Calibration models provided reasonable prediction of these traits and could be used for screening purposes. PLS statistics were oil (R2 = 0.82, SEP = 1.72), weight (R2 = 0.74, SEP = 0.71), and protein (R2 = 0.62, SEP = 0.96) for validation data sets comprising of one-third of the total samples. In conclusion, prediction models showed that SKNIR spectroscopy could be a very beneficial nondestructive technique to determine oil and weight as well as rapid screening of protein in single flax seeds while not requiring extensive preparation as compared to traditional techniques.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.