Multi global context-aware transformer for ship name recognition in IoT

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IET Communications Pub Date : 2024-12-17 DOI:10.1049/cmu2.12773
Yunting Xian, Lu Lu, Xuanrui Qiu, Jing Xian
{"title":"Multi global context-aware transformer for ship name recognition in IoT","authors":"Yunting Xian,&nbsp;Lu Lu,&nbsp;Xuanrui Qiu,&nbsp;Jing Xian","doi":"10.1049/cmu2.12773","DOIUrl":null,"url":null,"abstract":"<p>Scene text recognition has gained increasing attention in recent years, as it can connect products without an open interface in IoT. The non-local network is particularly popular in text recognition, as it can aggregate the temporal message of the input. However, existing text recognition methods based on RNN encoder-decoder structures encounter the problem of attention drift, especially in complex ship name recognition scenarios, because the features extracted by these methods are extremely similar. To address this problem, this paper proposes a novel text recognition approach named Multi Global Context-aware Transformer (MG-Cat). The proposed approach has two main properties: (1) a Global Context block that captures the global relationships among pixels inside the encoder, and (2) multiple global context-aware attention modules stacked in the encoder process. This way, the MG-Cat approach can learn a more robust intermediate feature representation in the text recognition pipeline. Moreover, the paper collected a new ship name dataset to evaluate the proposed approach. Extensive experiments were conducted on the collected dataset to verify the effectiveness of the proposed approach. The experimental results show the generalization ability of our squeeze-and-excitation global context attention module.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12773","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12773","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Scene text recognition has gained increasing attention in recent years, as it can connect products without an open interface in IoT. The non-local network is particularly popular in text recognition, as it can aggregate the temporal message of the input. However, existing text recognition methods based on RNN encoder-decoder structures encounter the problem of attention drift, especially in complex ship name recognition scenarios, because the features extracted by these methods are extremely similar. To address this problem, this paper proposes a novel text recognition approach named Multi Global Context-aware Transformer (MG-Cat). The proposed approach has two main properties: (1) a Global Context block that captures the global relationships among pixels inside the encoder, and (2) multiple global context-aware attention modules stacked in the encoder process. This way, the MG-Cat approach can learn a more robust intermediate feature representation in the text recognition pipeline. Moreover, the paper collected a new ship name dataset to evaluate the proposed approach. Extensive experiments were conducted on the collected dataset to verify the effectiveness of the proposed approach. The experimental results show the generalization ability of our squeeze-and-excitation global context attention module.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
期刊最新文献
Compact Dual-Band Microstrip Array Feed Network Using CRLH-TL Power Dividers An Efficient Cluster Based Routing in Wireless Sensor Networks Using Multiobjective-Perturbed Learning and Mutation Strategy Based Artificial Rabbits Optimisation CRAFIC Framework: Multi-Account Collaborative Fraud Detection, Efficient Feature Extraction and Relationship Modelling Combined with CNN-LSTM and Graph Attention Network A RIS-Based Single-Channel Direction-of-Arrival Estimation Method for Communication Signals Physical layer security in satellite communication: State-of-the-art and open problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1