The Influence of MoS2 Thickness on the Efficiency of Solar Energy Conversion in TiO2/MoS2/P3HT Cells

IF 8 2区 材料科学 Q1 ENERGY & FUELS Progress in Photovoltaics Pub Date : 2024-10-17 DOI:10.1002/pip.3856
Kamila Kollbek, Łukasz Jarosiński, Paweł Dąbczyński, Piotr Jabłoński, Marta Gajewska, Piotr Jeleń, Jakub Rysz, Konrad Szaciłowski, Marek Przybylski
{"title":"The Influence of MoS2 Thickness on the Efficiency of Solar Energy Conversion in TiO2/MoS2/P3HT Cells","authors":"Kamila Kollbek,&nbsp;Łukasz Jarosiński,&nbsp;Paweł Dąbczyński,&nbsp;Piotr Jabłoński,&nbsp;Marta Gajewska,&nbsp;Piotr Jeleń,&nbsp;Jakub Rysz,&nbsp;Konrad Szaciłowski,&nbsp;Marek Przybylski","doi":"10.1002/pip.3856","DOIUrl":null,"url":null,"abstract":"<p>In the era of global energy crisis, more attention is paid to efficient energy harvesting from renewable sources. Solar power is one of those widely utilized, yet the efficiency of devices converting energy needs to be constantly improved. One of the ideas is to create solar cells that benefit from 2D van der Waals structures combined with other materials such as TiO<sub>2</sub> and conductive polymers. Such hybrid solar cells show higher power conversion compared to non-composite photovoltaic devices. In this work, a TiO<sub>2</sub>/MoS<sub>2</sub> heterojunction created in the magnetron sputtering process was covered with a P3HT polymer coating. Composite multilayer systems were investigated (TEM, XRD, Raman spectroscopy and TOF-SIMS) to define the composition, optical properties and solar energy conversion potential. The photovoltaic response of the multilayer system was successfully improved by MoS<sub>2</sub> band gap engineering based on the quantum size effect. Furthermore, TiO<sub>2</sub>/MoS<sub>2</sub>/P3HT revealed enhanced optical properties and improved charge transport performance with reasonable energy band alignment. The photovoltaic efficiency of hybrid cells doubled compared to previously published work and reached 2.7%. Furthermore, the photovoltaic performance of the solar cells based on TiO<sub>2</sub>/MoS<sub>2</sub>/P3HT exhibited an improvement compared to that of the solar cell based on TiO<sub>2</sub>/P3HT or MoS<sub>2</sub>/P3HT.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 2","pages":"344-356"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3856","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3856","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of global energy crisis, more attention is paid to efficient energy harvesting from renewable sources. Solar power is one of those widely utilized, yet the efficiency of devices converting energy needs to be constantly improved. One of the ideas is to create solar cells that benefit from 2D van der Waals structures combined with other materials such as TiO2 and conductive polymers. Such hybrid solar cells show higher power conversion compared to non-composite photovoltaic devices. In this work, a TiO2/MoS2 heterojunction created in the magnetron sputtering process was covered with a P3HT polymer coating. Composite multilayer systems were investigated (TEM, XRD, Raman spectroscopy and TOF-SIMS) to define the composition, optical properties and solar energy conversion potential. The photovoltaic response of the multilayer system was successfully improved by MoS2 band gap engineering based on the quantum size effect. Furthermore, TiO2/MoS2/P3HT revealed enhanced optical properties and improved charge transport performance with reasonable energy band alignment. The photovoltaic efficiency of hybrid cells doubled compared to previously published work and reached 2.7%. Furthermore, the photovoltaic performance of the solar cells based on TiO2/MoS2/P3HT exhibited an improvement compared to that of the solar cell based on TiO2/P3HT or MoS2/P3HT.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
期刊最新文献
Issue Information Photovoltaics Literature Survey (No. 197) Cover Image Issue Information Photovoltaics Literature Survey (No. 196)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1