Pulsed and Polarized X-Ray Emission From Neutron Star Surfaces

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astronomische Nachrichten Pub Date : 2024-11-17 DOI:10.1002/asna.20240104
Matthew G. Baring, Hoa Dinh Thi, George A. Younes, Kun Hu
{"title":"Pulsed and Polarized X-Ray Emission From Neutron Star Surfaces","authors":"Matthew G. Baring,&nbsp;Hoa Dinh Thi,&nbsp;George A. Younes,&nbsp;Kun Hu","doi":"10.1002/asna.20240104","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The intense magnetic fields of neutron stars naturally lead to strong anisotropy and polarization of radiation emanating from their surfaces, both being sensitive to the hot spot position on the surface. Accordingly, pulse phase-resolved intensities and polarizations depend on the angle between the magnetic and spin axes and the observer's viewing direction. In this paper, results are presented from a Monte Carlo simulation of neutron star atmospheres that uses a complex electric field vector formalism to treat polarized radiative transfer due to magnetic Thomson scattering. General relativistic influences on the propagation of light from the stellar surface to a distant observer are taken into account. The paper outlines a range of theoretical predictions for pulse profiles at different X-ray energies, focusing on magnetars and also neutron stars of lower magnetization. By comparing these models with observed intensity and polarization pulse profiles for the magnetar 1RXS J1708-40, and the light curve for the pulsar PSR J0821-4300, constraints on the stellar geometry angles and the size of putative polar cap hot spots are obtained.</p>\n </div>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"346 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20240104","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The intense magnetic fields of neutron stars naturally lead to strong anisotropy and polarization of radiation emanating from their surfaces, both being sensitive to the hot spot position on the surface. Accordingly, pulse phase-resolved intensities and polarizations depend on the angle between the magnetic and spin axes and the observer's viewing direction. In this paper, results are presented from a Monte Carlo simulation of neutron star atmospheres that uses a complex electric field vector formalism to treat polarized radiative transfer due to magnetic Thomson scattering. General relativistic influences on the propagation of light from the stellar surface to a distant observer are taken into account. The paper outlines a range of theoretical predictions for pulse profiles at different X-ray energies, focusing on magnetars and also neutron stars of lower magnetization. By comparing these models with observed intensity and polarization pulse profiles for the magnetar 1RXS J1708-40, and the light curve for the pulsar PSR J0821-4300, constraints on the stellar geometry angles and the size of putative polar cap hot spots are obtained.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomische Nachrichten
Astronomische Nachrichten 地学天文-天文与天体物理
CiteScore
1.80
自引率
11.10%
发文量
57
审稿时长
4-8 weeks
期刊介绍: Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.
期刊最新文献
Issue Information: Astron. Nachr. 1/2025 Cover Picture: Astron. Nachr. 1/2025 Modeling the Emission and Polarization Properties of Pulsating Ultraluminous X-Ray Sources The Meaning of Quasi-Simultaneous X-Rays and Gamma-Ray Observations of RS Oph in Outburst Cover Picture: Astron. Nachr. 9/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1