Decades of coffee plantation alters soil methane uptake and soil organic carbon pools in China

Fulan Zhang, Hao Sun, Syed Turab Raza, Yingmo Zhu, Wen Yin, Danhua Fan, Rongjun Ma, Li Rong, Tao Ye, Zhe Chen
{"title":"Decades of coffee plantation alters soil methane uptake and soil organic carbon pools in China","authors":"Fulan Zhang,&nbsp;Hao Sun,&nbsp;Syed Turab Raza,&nbsp;Yingmo Zhu,&nbsp;Wen Yin,&nbsp;Danhua Fan,&nbsp;Rongjun Ma,&nbsp;Li Rong,&nbsp;Tao Ye,&nbsp;Zhe Chen","doi":"10.1002/saj2.70006","DOIUrl":null,"url":null,"abstract":"<p>The conversion of forest into coffee plantation through deforestation has become one of the main land use changes in tropical region, yet its impact on soil organic carbon (SOC) and methane (CH<sub>4</sub>) uptake remains unclear, leading to uncertainties in estimating carbon fluxes in tropical area. The main coffee planting areas in China and the adjacent forests were selected to explore the effects of forest-to-coffee conversion and coffee stand ages on SOC and CH<sub>4</sub> uptake. We conducted our study by comparing coffee plantations of varying ages to the nearby forests within the same area. We treated the different-aged coffee plantations as our experimental groups and used the forests as our control groups. This paired comparison allowed us to exclude external factors such as climate, soil type, and vegetation differences, ensuring that our analysis focused on the effects of stand age alone. The 25-year, 43-year, and 55-year coffee plantations reduced SOC by 51%, 66%, and 65% compared to nearby forests, while soil microbial biomass carbon decreased by approximately 60%. Coffee stand age influenced ambient CH<sub>4</sub> uptake significantly: soils in 43- and 55-year-old coffee plantations and natural forests acted as CH<sub>4</sub> sinks, while the 25-year-old stand showed weak CH<sub>4</sub> emission. In 25-year, 43-year, and 55-year coffee plantations, the CH<sub>4</sub> uptake rates were 87%, 54%, and 65% lower, respectively, compared to the CH<sub>4</sub> uptake rates in the natural forests nearby. Soil moisture, inorganic nitrogen content, and CH<sub>4</sub> monooxygenase (MMO) activity were the main factors affecting CH<sub>4</sub> uptake rates across land uses in the ambient CH<sub>4</sub> background. Further CH<sub>4</sub> metabolism indicated a close relationship between ambient CH<sub>4</sub> uptake, CH<sub>4</sub> oxidation, and methanogenesis pathways. Our study highlights the reduction of SOC pools in coffee plantations in China is accompanied with the reduction of CH<sub>4</sub> uptake and changed metabolism of CH<sub>4</sub>-oxidizing microorganisms.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/saj2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The conversion of forest into coffee plantation through deforestation has become one of the main land use changes in tropical region, yet its impact on soil organic carbon (SOC) and methane (CH4) uptake remains unclear, leading to uncertainties in estimating carbon fluxes in tropical area. The main coffee planting areas in China and the adjacent forests were selected to explore the effects of forest-to-coffee conversion and coffee stand ages on SOC and CH4 uptake. We conducted our study by comparing coffee plantations of varying ages to the nearby forests within the same area. We treated the different-aged coffee plantations as our experimental groups and used the forests as our control groups. This paired comparison allowed us to exclude external factors such as climate, soil type, and vegetation differences, ensuring that our analysis focused on the effects of stand age alone. The 25-year, 43-year, and 55-year coffee plantations reduced SOC by 51%, 66%, and 65% compared to nearby forests, while soil microbial biomass carbon decreased by approximately 60%. Coffee stand age influenced ambient CH4 uptake significantly: soils in 43- and 55-year-old coffee plantations and natural forests acted as CH4 sinks, while the 25-year-old stand showed weak CH4 emission. In 25-year, 43-year, and 55-year coffee plantations, the CH4 uptake rates were 87%, 54%, and 65% lower, respectively, compared to the CH4 uptake rates in the natural forests nearby. Soil moisture, inorganic nitrogen content, and CH4 monooxygenase (MMO) activity were the main factors affecting CH4 uptake rates across land uses in the ambient CH4 background. Further CH4 metabolism indicated a close relationship between ambient CH4 uptake, CH4 oxidation, and methanogenesis pathways. Our study highlights the reduction of SOC pools in coffee plantations in China is accompanied with the reduction of CH4 uptake and changed metabolism of CH4-oxidizing microorganisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new hydraulic barrier with the gradient distribution of fixed net negative charges An empirical equation for sediment transport capacity of overland flow: Integrating slope, discharge, and particle size A short history of astropedology Microscale imaging of phosphate mobility under unsaturated flow as affected by a fertilizer enhancing polymer Mineralization potential of spent coffee grounds and other nutrient sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1