{"title":"The impact of entrapped air bubbles on cell integration in porous metallic biomaterials","authors":"Satoshi Migita, Reno Tsushima, Tomotaka Kishita, Suyalatu","doi":"10.1049/bsb2.12091","DOIUrl":null,"url":null,"abstract":"<p>Additive manufacturing has enabled the creation of 3D porous metallic medical materials, crucial for enhancing cell ingrowth and tissue integration. However, despite extensive research on optimising pore size, inconsistencies persist in achieving optimal cells and tissues adhesion. In this study, the authors show that cell attachment and proliferation are hindered by the formation of bubbles within the pores, which may act as physical barriers. The authors fabricated porous titanium (Ti) and tantalum (Ta) scaffolds by selective laser melting and investigated the effects of bubble entrapment on cell adhesion and proliferation. The authors’ results demonstrate that bubble removal significantly enhanced cell integration. These results indicate the importance of both geometrical design and microenvironmental conditions to prevent bubble formation, ensuring cell adhesion and tissue integration in the development of next-generation porous metallic scaffolds.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12091","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing has enabled the creation of 3D porous metallic medical materials, crucial for enhancing cell ingrowth and tissue integration. However, despite extensive research on optimising pore size, inconsistencies persist in achieving optimal cells and tissues adhesion. In this study, the authors show that cell attachment and proliferation are hindered by the formation of bubbles within the pores, which may act as physical barriers. The authors fabricated porous titanium (Ti) and tantalum (Ta) scaffolds by selective laser melting and investigated the effects of bubble entrapment on cell adhesion and proliferation. The authors’ results demonstrate that bubble removal significantly enhanced cell integration. These results indicate the importance of both geometrical design and microenvironmental conditions to prevent bubble formation, ensuring cell adhesion and tissue integration in the development of next-generation porous metallic scaffolds.